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Abstract

We present a neural model of the frontal eye fields. It consists of several retinotopic arrays of neuron-like units that are re-

currently connected. The network is trained to make memory-guided saccades to sequentially flashed targets that appear at arbitrary

locations. This task is interesting because the large number of possible sequences does not permit a pre-learned response. Instead

locations and their priority must be maintained in active working memory. The network learns to perform the task. Surprisingly,

after training it can also select targets in visual search tasks. When targets are shown in parallel it chooses them according to their

salience. Its search behavior is comparable to that of humans. It exhibits saccadic averaging, increased reaction times with more

distractors, latency vs accuracy trade-offs, and inhibition of return. Analysis of the network shows that it operates like a queue,

storing the potential targets in sequence for later execution. A small number of unit types are sufficient to encode this information,

but the manner of coding is non-obvious. Units respond to multiple targets similar to quasi-visual cells recently studied [Exp. Brain

Res. 130 (2000) 433]. Predictions are made that can be experimentally tested.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Much work in attention and eye movement planning

focuses on how a single visual item is selected from

several, i.e. visual search. However neither attention nor

eye movement planning is limited to such unitary se-

lection. We often need to keep several items in mind
simultaneously, shifting attention back and forth be-

tween them. Attention can be distributed among several

items, for example, when tracking multiple objects

through a scene (Pylyshyn & Storm, 1988; Sears &

Pylyshyn, 2000). Likewise, in planning eye movements it

appears that multiple targets can be processed concur-

rently (Becker & Jurgens, 1979; McPeek & Keller, 2001).

The ability to divide and shift attention is important in
many natural tasks. However, little is known about the

neural mechanisms involved.

One task that requires several items be kept in mind is

the sequential saccade task. In this task a sequence of
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targets is flashed and then disappears. Subjects maintain

the items in working memory, and later when cued,

move their eyes to each in the order they were presented.

Depending on the details of the task, different atten-

tional and memory resources are necessary to solve it. If

the task involves only a small set of highly practiced

sequences, or blocks in which the same sequence is re-
peated, the resources needed can be low, i.e. motor se-

quences can be learned and retrieved from procedural

memory. Much is already known about the neural

mechanisms involved in this kind of task for reaching

(Shima & Tanji, 2000; Tanji & Shima, 1994) and for eye

movements (Isoda & Tanji, 2002; Lu, Matsuzawa, &

Hikosaka, 2002). If instead there is a larger range of

target locations and thus many possible sequences, and
if the sequences are randomly interleaved, then a pro-

cedural response becomes difficult. Then targets must be

actively maintained in working memory for saccades to

be planned to them.

We are interested in the working memory version of

the task. To solve the task, the brain must maintain two

types of information: (1) the location of multiple targets,

and (2) their priority.
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Recent lesion studies indicate the frontal eye fields

(FEF) play a central role in this version of the task

(Schiller & Chou, 2000a). Lesions of the FEF cause se-

vere and prolonged deficits in maintaining the order of

targets. The supplementary eye fields (SEF) is also im-

portant in sequential saccades (Pierrot-Deseilligny, Ri-

vaud, Gaymard, Muri, & Vermersch, 1995). However,

the SEF appears to play a less important role in this
specific task. SEF lesions cause only partial deficits that

recover (Schiller & Chou, 2000a; Sommer & Tehovnik,

1999).

A small number of studies have investigated the

neural mechanisms involved in the working memory

version of the task. All of them have recorded from cells

in the FEF. Two classes of cell are found that encode a

memory of target locations. Both have local receptive
fields and code in a retinal coordinate frame. The first

class, the quasi-visual cells (also called visual tonic cells),

respond to any potential target that falls inside their

receptive field (Tian, Schlag, & Schlag-Rey, 2000). The

second class, visuo-movement cells, respond selectively

for the next intended target (Segraves, 1992; Segraves &

Goldberg, 1987). It remains unclear how these cells en-

code the order of targets, or how the next target gets
selected at each step in a sequence.

One computational solution is a queue. In a queue

several items are stored separately and in sequence. The

first item to enter the queue is the first processed. After

one item is done, then others shift forward and are

processed. This continues until the queue is empty. This

is an effective strategy for keeping multiple items in

memory, prioritizing them, and then shifting attention
between them.

Xing and Andersen (2000) presented a neural net-

work model that implements a queue. A separate group

of neuron-like units maintains information for each

target stored in memory. The groups are organized in

order of the targets� priority in the queue. The first

group stores the location of the first target. The second

stores the location of the second target, and so on. After
a saccade is finished for the first target, its location is

cleared from memory in the first group and feed-for-

ward excitation from the second group loads the target

waiting behind it. In this manner, all of the targets

waiting in the queue shift forward until a saccade has

been made to each of them.

The recent physiological findings from the FEF do

not support a queue (Tian et al., 2000). While visuo-
movement cells are selective to the next target, no class

of cells is found that is selective to only the second

target, or to only the third target, etc. Instead, there is a

class of cells, the quasi-visual cells, which responds for

any target. This suggests that another strategy may be

involved.

Here we present a novel strategy. It is implemented in

a neural network model. The model was generated using
neural systems identification (Zipser, 1992). Neural

systems identification requires specifying the temporal

sequence of inputs and outputs for the task rather than

the detailed connectivity of the network. An optimiza-

tion, or �learning�, procedure configures the network to

implement the task.

The network model was developed in stages. First it

was trained to perform a simplified version of the sac-
cade task. The targets are flashed in sequence and after a

delay the network outputs their locations in the order

presented but without moving the eyes to them. It is as if

saccade commands were generated, but the eyes were

paralyzed. Although simple, this task is sufficient to

teach the network how to encode multiple target loca-

tions and their order in working memory.

After this initial phase of training, we revise the net-
work to perform the task with eye movements. Eye

movements introduce an additional problem of updat-

ing. With each move of the eyes, the locations of sec-

ondary targets on the retina also move. If the targets

were visible these changes would be registered directly in

the visual input. For remembered targets these changes

must be generated internally. We extend the network to

perform this updating with mechanisms already pro-
posed in the literature. The revised network becomes

more realistic, both in terms of its behavior and its

physiological properties, but still uses the same working

memory mechanism.

The network architecture is designed to resemble the

FEF. We model the FEF for two reasons. First, a recent

study has recorded from single units in the FEF during

the working memory version of the task (Tian et al.,
2000). It provides data necessary to constrain our

model. Second, although the SEF play an important

role in sequential saccades, their role seems secondary

for this particular task (Schiller & Chou, 2000a; Sommer

& Tehovnik, 1999).

Although we focus on the FEF, the mechanisms

identified could be relevant to other areas. In fact this

seems likely given that most saccade areas share cell
types with similar physiological properties and are

highly interconnected (Chafee & Goldman-Rakic, 1998;

Pare & Wurtz, 2001; Sommer & Wurtz, 2001); for re-

view (Wurtz, Sommer, Pare, & Ferraina, 2001).

The model network consists of four arrays of neuron-

like units. The arrays are retinotopic, shift-invariant

(Fukushima, 1980), and fully connected. Together they

form a large recurrent network. Two of these arrays act
as the network�s outputs. They are trained to behave like
the cell classes found in the FEF. They have local re-

ceptive fields and code in the retinal coordinate frame.

One array has units that behave like saccadic burst cells.

They decide where to move the eyes. The second array

has units that behave like quasi-visual cells. They encode

a memory for target locations over delay periods. The

other two arrays in the network are hidden. They are not



J.F. Mitchell, D. Zipser / Vision Research 43 (2003) 2669–2695 2671
trained to perform any specific behavior. Their proper-

ties emerge as the network learns to solve the simplified

task.

The input to the network consists of a retinal array

and a fixation signal. The retinal array contains units

that resemble phasic visual cells. They give the flashed

targets in sequence. The fixation signal controls when

saccadic commands are made. It suppresses the activity
of the saccadic burst units until a saccade is desired.

During training it is set by an algorithm, but later it is

replaced with a more realistic signal that is part of the

network�s internal dynamics.
One desirable feature of the architecture is that de-

spite its size, it remains relatively simple. In total, it

contains 4 arrays of 32 units with 19,460 synaptic con-

nections. However, it can be specified by only 100 pa-
rameters. The reduction in complexity is due to two

constraints on the architecture. First, each array is shift-

invariant. This means that each unit in an array shares

the same weight pattern with the only difference being

that the pattern is shifted to its corresponding retinal

location. Second, the weight pattern connecting any two

arrays is constrained to be a difference of Gaussians

(DOG) function. This function gives a reasonable ap-
proximation to the winner-take-all interactions that

have been posited to occur between cells at different

retinal locations in saccade areas (Schlag, Dassonville, &

Schlag-Rey, 1998; Munoz & Istvan, 1998). The function

has 5 parameters. Thus the connectivity between any

two arrays requires only 5 parameters. The connectivity

between all 4 arrays plus the inputs requires 100 pa-

rameters to describe. During learning, it is these pa-
rameters which are optimized instead of the individual

weighted connections.

The network resulting from training is what we call

a distributed queue. It represents the same information

found in a queue, but its units do not segregate into

groups that selectively encode for one target. Instead,

each responds to several targets in a distributed manner

that resembles quasi-visual and the visuo-movement
cells of the FEF. Predictions are made that can be ex-

perimentally tested.

One surprising result is that when targets are pre-

sented in parallel, the network selects them according to

their salience, i.e., it performs target selection in visual

search. It makes a saccade to the brightest target first,

the second brightest second, and so on. We compare the

behavior of the model to humans in search. It exhibits
spatial averaging, increased reaction times with more

distractors, latency vs. accuracy trade-offs, and inhibi-

tion of return.

2. The saccade task

The task resembles the triple step paradigm (Tian

et al., 2000). It begins by flashing three saccade targets in
sequence at different locations. The targets appear for a

short time and then disappear. Following a delay, a fix-

ation cue turns off and the location of each target is

output in the order they were presented. The output is a

purely abstract representation of a saccade at this point.

It specifies a command for where to make a saccade

similar to burst cells, but does not actually move the eyes.

Later we revise the model so eye movements are made
and the retinal location of secondary targets is updated to

account for the corresponding changes in eye position.

The task is represented to the network by a temporal

sequence of inputs and the corresponding outputs. The

inputs consist of a 1-D retinal array of visual units and

a fixation unit. The visual units give the flashed targets

in sequence. The fixation unit signals when to make

saccades. The outputs consist of two 1-D arrays. One
output array contains saccadic burst units that represent

the desired movements. The other contains memory

units that are trained to encode each target location

from the time it appears until the time it is output by the

saccade units.

The activity of the inputs and desired saccade outputs

is shown through a typical trial in Fig. 1. The inputs and

outputs are shown as a column of squares at each time
step (time on the horizontal axis). Each square repre-

sents a unit with its size being proportional to the unit�s
activation (zero activity being a small square). The 1-D

retinal arrays are each shown with 8 units to ease illus-

tration. In the actual task there are 32 units in each

array and active locations are Gaussian distributed

(r ¼ 2 units). This makes it possible to represent a

continuous range of locations. Details for generating
trials and computing the input–output sequences are

given in Section 13.

The 1-D input array of visual units encodes a se-

quence of flashed targets. Each target appears at a dif-

ferent retinal location and remains visible for three time

steps. The units have Gaussian receptive fields (r ¼ 2

units). Their temporal response to stimuli is phasic. It

decays exponentially from the time of stimulus onset
and then completely turns off after three time steps (Fig.

1 inset). This behavior is roughly consistent with phasic

visual cells that are found in the FEF (Thompson,

Hanes, Bichot, & Schall, 1996). Since no trace of the

targets remains in the input, the network must learn

to remember what it has seen.

The fixation input tells the network when to make a

saccade. It is designed to be similar to fixation cells
found in the FEF. They maintain a high level activity

during fixation which then drops at the time of saccades

(Everling, Dorris, Klein, & Munoz, 1999; Everling &

Munoz, 2000; Hanes, Patterson, & Schall, 1998; Munoz

& Wurtz, 1993a). Our fixation unit has a high activation

of 1 during delays that then drops to 0 for saccades

(bottom row Fig. 1). The first time it drops, the saccade

outputs should choose the first target. The second time it
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drops, they should choose the second target, and so on.

Although this control of fixation is artificial, it is im-

portant to the training process. By specifying when to

make a saccade, we know when to train the saccade
outputs. Once training is done, we can relax this con-

straint and design a more realistic signal that is part of

the network�s internal dynamics.
Saccade outputs consist of a 1-D array similar to the

visual units. But instead of encoding the presence of

targets, they encode a motor command to move the eyes

to a retinal location. Like visual units, they have

Gaussian receptive fields (r ¼ 2). They are silent until
the time of a saccade is desired. Then they output a burst

of activity at the target location. This is consistent with

how burst cells in the superior colliculus and FEF en-

code movement commands (Goldberg & Bruce, 1990;

Sparks, 1989).

The duration of the saccadic bursts lasts three time

steps. This is analogous to about 60 ms, which is com-

parable to the duration of movements in the triple-step
experiments (Tian et al., 2000). We do not model the

detailed temporal profile of the burst activity. The out-

puts maintain a constant level of heightened activity

over the movement (Fig. 1 inset).
The memory outputs encode the locations of re-

membered targets. They are necessary to teach the net-

work to sustain a memory through long delay periods.

This strategy has been used previously (Moody, Wise,
Pellegrino, & Zipser, 1998). They maintain a constant

level of activity for each target from the time it appears

until it is output for a saccade. They have Gaussian

receptive fields similar to the visual units. Their behavior

is consistent with what is currently known about the

activity of quasi-visual cells (Tian et al., 2000).
3. The neural network

The network architecture consists of four 1-D arrays

of neuron-like units that are retinotopically organized.

Each array is shift-invariant. This means that although

it contains many units, each of them is identical except

for a shift in their retinal location.

The four arrays are fully connected to form a large

recurrent network. The architecture is depicted in Fig. 2.
The first array, Y1, is the saccade output. The second, Y2,
is the memory output. The other two, Y3 and Y4, are
hidden.
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The number of hidden arrays can be varied para-

metrically. In unconstrained neural networks it is well

known that given a sufficient number of hidden units

any well-defined task can be solved (Hornik, Stinch-

combe, & White, 1989). The situation is somewhat dif-

ferent in our architecture because each of the units in an

array is constrained to be the same type, only differing in

retinal location. For this case, any problem can in
principle be solved if there are enough hidden arrays,

i.e., enough types. We found that two were enough to

solve the sequential saccade task as defined.

The input to the network comes from a retinal array

of units and from two single lines for a fixation and a

bias input. The retinal array of units gives the flashed

targets in sequence. It connects to the memory outputs

and hidden arrays, but not the saccade outputs. The
saccade outputs do not receive direct visual input. The

fixation input tells the network when saccades should

occur. It connects to the saccade outputs which repre-

sent the saccades. The bias input connects to each array.

It has a constant activity of 1. It allows each array to

adjust its baseline level of activity.

The connectivity of the saccade outputs is consistent

with what is known about burst cells. Burst cells occur
in the deep layers of cortex. They do not receive direct

projections from the input layer of cortex. This detail is

included in the network by omitting the connection from

visual inputs. The burst cells are also known to be in-

hibited by fixation cells (Munoz & Wurtz, 1993b). This

is incorporated by having the fixation input make a

strong inhibitory connection to the saccade output, ef-

fectively suppressing bursts until the time of saccades.
The connectivity between each pair of arrays is de-

scribed by a weight kernel. This is a pattern of weights

that is shared by every unit in the array. Each unit uses it

to connect itself with its corresponding retinal location

in other arrays. There are several weight kernels in the

model. They are depicted as circular nodes, Wij or Wiv, in

Fig. 2.

The weight kernels are constrained to be difference of
Gaussians (DOG) functions plus a mean value. This

function has been used in other shift-invariant neural

models (Itti & Koch, 2000; Kopecz & Schoner, 1995)

and appears to give a reasonable approximation of the

recurrent connectivity in saccade areas (Munoz & Ist-

van, 1998; Schlag et al., 1998). It gives the weight be-

tween a pre- and post-synaptic unit as a function of the

distance between them, x, as
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W ðxÞ ¼ Bþ A1e
� x2

2r2
1 þ A2e

� x2

2r2
2 ð1Þ

where B, A1, A2, r1, and r2 are its 5 parameters. A typical

example is depicted in Fig. 2.

Although the network contains 128 recurrently con-

nected units with 19,460 connections, only 100 free pa-

rameters have to be learned. During training, the 5

parameters of the weight kernels are optimized instead of
the weights themselves. The number of parameters nee-

ded to describe the connectivity of each type is listed in

Fig. 2. The saccade outputs need 22 parameters. They

receive connections through 4 weight kernels (W11–W14).

Each kernel has 5 parameters, thus giving 4· 5¼ 20 pa-

rameters. Two more parameters are needed due to the

weights from the fixation and the bias input. This gives 22

in total. For the memory outputs and the hidden arrays
26 parameters are required. Each receives connections via

5 weight kernels, 4 recurrent (Wi1–Wi4) and 1 visual (Wiv).

Thus 5 · 5¼ 25 parameters are needed, plus one more for

the weight from the bias to give a total of 26. In the entire

network, there are 22 parameters for saccade outputs,

and 26 parameters for the memory outputs and the two

hidden arrays, thus giving 22+ 3(26)¼ 100 parameters.

The activations of units at each time step depend on
their membrane potentials. Current input from synapses

determines the membrane potential. The net synaptic

input current is computed by the dot product of the

unit�s synaptic weights with the corresponding pre-syn-

aptic activations. For unit i the current at time t þ 1 is

netiðt þ 1Þ ¼
X
j

wijyjðtÞ þ
X
k

wikxkðtÞ ð2Þ

where j indexes the network units, k indexes the inputs,
wij is the recurrent weight from a unit with activation yj
and wik is an input weight from an input with activa-

tion xk.
The synaptic current accumulates charge on the unit�s

membrane. The potential on the membrane at time t þ 1

is

uðt þ 1Þ ¼ knetðtÞ þ ð1� kÞuðtÞ ð3Þ
where k ranges between 0 and 1. This is the discrete form
of a continuous differential equation. The value k is

given as k ¼ 1� e�Dt=s where Dt is the size of the time

steps and s is the membrane time constant. We use

Dt ¼ 20 ms and s ¼ 6 ms.

The activation is a non-linear function of the mem-
brane potential. It is intended to model the average fir-

ing rate of a cell. An essential feature of cortical neurons

is that their average firing rate saturates for increasing

input. We model this by

y ¼
1

1þe�u if u < 0

0:5
ffiffiffiffiffiffiffiffiffiffiffi
1þ u

p
if uP 0

�
ð4Þ

where u is the membrane potential. This function is

similar to the logistic function found in most neural
network models, but it has a less severe squashing non-

linearity for positive values. This is consistent with re-

cent measurements of the contrast-response functions of

cortical neurons (Reynolds, Pasternak, & Desimone,

2000).

Although the network is large, the unit activations

can be computed efficiently by exploiting its shift-

invariance. We first eliminate the boundary conditions
at the ends of each array by making it wrap around itself

in a circle so the first unit is adjacent to the last. With

this modification, the equations for updating the net

synaptic currents can be rewritten as sums of convolu-

tions between weight kernels and activity arrays. The

convolutions can be computed faster by using the Fast

Fourier Transform (FFT) (Press, Vetterling, Teukolsky,

& Flannery, 1988). See Section 13 for details.
4. Network training

The connectivity of the network is optimized through
gradient descent using a continuous variant of the Back-

propagation Through Time algorithm (Pearlmutter,

1995). Error is not propagated on every time step of the

task. It is only propagated when the fixation input drops

and the saccade outputs are released from inhibition.

Error for the memory outputs is propagated on the same

cycles.

Gradient descent is performed in the space of DOG
parameters. This requires several steps for each incre-

ment in gradient descent. First, the desired changes to

the weight kernels and biases are computed using weight

sharing (Fukushima, 1980; LeCun et al., 1989; Rumel-

hart, Hinton, & Williams, 1986). This insures that shift-

invariance is maintained. The resulting shift-invariant

weight changes are then used to compute the gradient

direction for the five kernel parameters. The kernel pa-
rameters are updated, and then the new weight patterns

are generated. This constrains the network to solutions

in which the weight kernels are shift-invariant and de-

fined by difference of Gaussians. Details are given in

Section 13.

The choice of the initial kernel parameters is impor-

tant. If poor parameters are chosen, the network learns

extremely slowly or not at all. The best results occur by
initializing the kernels randomly, but in a region of

parameter space where winner-takes-all behavior emer-

ges. Parameter ranges are given in Section 13.

The untrained network can select and store the first

target of a sequence. This results from its winner-takes-

all interactions. It does not know how to encode mul-

tiple targets, their order, or how to plan saccades to

them. It learns to do these things during training.
Networks with different random initial weight kernels

are trained in the task. Training occurs on a continuous

stream of randomly generated trials. The mean squared
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error between the desired and actual outputs is tracked.

Training stops when the error stops decreasing. This

takes 40,000 trials on average.

We explored different learning rates and found they

do not alter the solution as long as they are below some

limit. A learning rate of 0.003 is used. It gives the fastest

convergence.
5. Aborted trials in training

One problem encountered in training is what to do

when an incorrect decision is made in the beginning or

middle of a sequence. For the purpose of training, we

must decide what is the desired output behavior fol-
lowing the error. But what is correct? If the network

selects the second target first, then what is appropriate

for the second target? Certainly not the second again.

Our approach is similar to what is done in training

monkeys. Monkeys responses are monitored continu-

ously, and as soon as an error occurs the trial is aborted.

The monkey may continue after an error, but it is not

rewarded for the last portion of a sequence unless the
first part is correct.

We follow the same strategy. We monitor what is

output as the trial unfolds. The network is always

trained on the first target. If it gets it right, then the trial

continues to the next one. Otherwise the trial stops, the

network activity is reset to zero, and a new trial begins.

If the network outputs all the targets without an error,

then it may continue into the next trial without ever
being reset. By the end of training it performs continu-

ously with no pause between trials.
6. Network performance

To evaluate the network�s performance after training,
we simulate 1000 randomly generated trials and calcu-

late the percentage correct. A trial is counted correct if

the targets are chosen in the desired order and each is

accurately identified. For each saccade command we

require that the location of peak activity in the output

array be within one unit of the desired peak.

Performance is evaluated at different duration delay
periods. We tested with 4, 16, and 64 time step delays

(80, 320, and 1280 ms roughly).

Networks with fewer than two hidden types could not

learn the task. The best result achieved with one hidden

type was 70% accuracy. This was at the shortest delay.

At longer delays the performance drops still further. The

network fails to remember the secondary targets and

sometimes confuses their order.
Networks with two hidden types learn the sequential

task perfectly. They identify each of the three targets in

sequence with 100% accuracy. They are also robust to
the duration of delay, performing equally well at the

shortest and longest delays.

A remarkable finding is that some of the network

versions with two hidden types generalize to a visual

search task. The versions differ only by their random

initial weights and by the random sequence of trials in

training. Each of them solves the sequential task, but the

ways they solve it are different. Some solutions are better
suited to the visual search than others.

We test how each solution generalizes. No additional

training is performed. The network weights are fixed,

and then it is run in 1000 trials in which the tar-

gets appear simultaneously but have distinct intensity

differences. Trials are counted correct if targets are

chosen according to their intensity, beginning with the

brightest.
One network generalizes to the visual search task

with perfect performance. It selects the targets in order

of their brightness. We focus on this network in our

analysis and revisions. Other versions are considered in

the discussion.
7. Analysis of memory mechanisms

Before considering revisions to the model, we first

analyze the working memory solution identified in

training. We show how units encode target locations

and their order. The details are difficult to absorb at

one glance. Therefore we break our analysis into three

parts.

First we study the memory activity in the delay pe-

riod. Units with memory activity exhibit different levels
of selectivity to visual stimuli. Some respond to any of

the presented targets, others are more selective. The

selections made are compatible for the search and se-

quential tasks. This is what enables the network to

generalize between tasks.

Second, we show the memory activity gives a dis-

tributed representation of the information in a queue.

With a linear transformation, we can extract an ordered
list of the target locations that are waiting to be exe-

cuted.

Third, we analyze the connectivity of the network.

The architecture discovered resembles a queue. We dis-

cuss how interactions between units maintain target

order.

7.1. Memory activity

Together the hidden types and memory outputs

constitute the working memory of the network. In this

section we examine how targets are loaded and stored in
working memory.

In Fig. 3, the network activity during the delay period

is shown. The trial begins with three targets flashed
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simultaneously. They appear in the visual input. The

brightest target is at the bottom of the 1-D retinal input,

and the darkest at the top. The spatial profile of the

activity is shown on the right. Visual activity is Gaussian

shaped for each of the targets. Its height encodes target

intensity.

Memory units sustain activity over delays after the
input disappears. They respond to targets that fall inside

their receptive fields. The spatial profile of response is

depicted for each type on the right in Fig. 3 (space is

plotted on the vertical). Units have Gaussian shaped

responses similar to cells studied in the FEF (Schall,

Hanes, Thompson, & King, 1995). The shape derives

from the excitatory component of the difference of

Gaussians weight pattern. The inhibitory component of
the difference of Gaussians does not have a pronounced

effect in the activity profile as it falls below threshold in

the sigmoidal activation function.

Each type responds to a different number of targets.

Beginning from the bottom of Fig. 3, hidden type 2 is

the most selective. Its units respond only when the
brightest target falls inside their receptive fields. Thus, it

selects one target. Hidden type 1 responds to the first

and second brightest targets. It selects two. The memory

outputs respond to any of the three targets. They select

all of them (as they were trained to do). Subsequently,

we will refer to these different types as select-one, select-

two, and select-all.
The visual inputs load targets into memory. They

excite corresponding retinal locations in each of the

network arrays. If the excitation is sufficiently strong,

the units at that location become active. Activity can

persist over delays without visual input.

What constitutes sufficient excitation is complicated.

It depends on the selectivity of the unit, and also on

whether or not the neighbors of that unit are already
active. Some arrays respond to a maximum of one or

two locations. Once they reach capacity, further visual

excitation is ineffective. We examine how the recurrent

connections contribute to this behavior.

Activated locations are sustained through the weight

kernel connecting each array to itself. We refer to it as
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the self-connecting kernel. The other recurrent connec-

tions are unnecessary to sustain activity. Lesioning them

has no significant effect. They play other roles in the

network that we discuss later.

Each self-connecting pattern resembles a Mexican-

hat. A few examples are shown in Fig. 4. It has excit-

atory connections between neighboring units and

inhibitory connections between distant ones. The local
excitatory connections support activity within a region

in an array. Inhibitory surrounds prevent the spread of

activity beyond that region. Activity can persist at a

fixed location for indefinite periods.

The level of global inhibition between units determines

the maximum number of locations that can become

active in an array (Fukai & Tanaka, 1997). Global in-

hibition refers to the inhibitory connections between
units that are distant. It depends on the bias value, B, in
the kernel. Two kernels with different bias values are

shown in Fig. 4. The top one is from the select-all units

and the bottom one is from the select-one units.

When global inhibition is weak, several active loca-

tions can persist in an array. This is the case for kernel of

the select-all units. It has a bias value near zero. Distant

locations operate independently of each other.
Competitive dynamics emerge when global inhibition

is strong. This is the case for the select-one type. Its self-

connecting kernel has a large negative bias. Distant

locations inhibit each other. This causes competition

between locations. Only the most active can survive.

Kernels that produce a few surviving locations are

also possible. They must have intermediate levels of

global inhibition. This is the case for the select-two type.
It is an example of winner-takes-n dynamics (Fukai &

Tanaka, 1997). The n most active locations are selected.
One of the stable states of each of the memory types

is silence. This is important to their operation. The
Recurrent Weight Kernels

B

Fig. 4. Self-connecting recurrent weight kernels. Depending on the bias par

remain active. This is an example of winner-takes-n dynamics (Fukai & Tan
competitive dynamics they implement are not strong

enough to select a winning location from weak or ran-

dom initial activities. If this were not the case, the net-

work might choose target locations at random.

Target selection is determined by the visual excitation

input at the start of each trial. The excitation is stronger

for the brighter targets. This biases competitive dy-

namics in their favor. For this reason the select-one
array always selects the brightest target and the select-

two array selects the two brightest targets.

In the sequential task, the latency of visual excitation

determines target selection. Earlier targets are favored

over later ones. This is because the memory arrays ac-

cept the first target which excites them. When later

targets appear they have already reached their maxi-

mum capacity and are less responsive. The select-one
array thus responds to the first flashed target, but not

those after it. The select-two array responds to the first

two flashed targets.

The mapping between target latency and brightness

is compatible. This allows the network to generalize

between the sequential and search tasks.

7.2. Distributed encoding

The varying levels of selectivity found among the

memory units give a distributed representation of a

queue. We show how to extract an ordered list of the
target locations from this activity.

The reconstructed queue is presented in Fig. 5. The

input to the reconstruction is the arrays of memory ac-

tivity from the delay period shown in Fig. 3. To ease

illustration, the activity is rotated so space is now on the

horizontal axis. The output consists of three arrays of

activity: Q1, Q2, and Q3. Each is computed by a

weighted sum of the input. Q1 encodes the location of
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ameter, B, different numbers of locations in an array are selected and

aka, 1997).
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the first target alone. Q2 encodes the second target

alone, and Q3 encodes the third target.

It is trivial to determine the activity for Q1. It should

be identical to the select-one array. That is because that

array encodes the first target alone (Fig. 5, bottom).

Extracting the second target is more difficult because
no memory type encodes it alone. The select-two units

respond to it, but they also respond to the first target.

The magnitude of the two responses is nearly identical.

It is not possible to distinguish them on average. How-

ever, a weighted sum of select-one and select-two array

activities extracts the second target. If ~HHS1 is the select-

one array, and ~HHS2 the select-two array, then

~QQ2 ¼ ~HHS2 � 0:8~HHS1 ð5Þ

is the equation for a new array, ~QQ2, which has a single

peak at the location of the second target (Fig. 5, middle).

The third target can be extracted from a weighted

sum of the select-all array and the select-two array.
Expressing the select-all array as ~HHSA the equation

~QQ3 ¼ ~HHSA � 0:7~HHS2 ð6Þ

gives a new array, ~QQ3, that has a single peak for the third

target (Fig. 5, top).

We test the accuracy of the reconstruction in 1000
randomly simulated sequential and search trials. For the

parameters chosen, it always identifies the three target

locations separately with perfect accuracy.
7.3. Network connectivity

The connectivity of the network can be simplified.

Several of the weight kernels are near zero after training.

These kernels can be removed from the network. The

kernels that remain all share a similar Mexican-hat
pattern. They can be simplified to have the same form,

so they vary only in their magnitude and their bias

value. These modifications have a negligible effect on the

network�s performance. The structure that remains re-

sembles a queue.

In Fig. 6 we present a schematic of the network that

remains. The order of the arrays is redrawn to reflect the

flow of information. Each of the arrays is presented as a
rectangular box with a plot of its population activity.

Information flows from the visual input at the bottom to

the burst outputs at the top. The selectivity of units in-

creases at each ascending stage in this hierarchy. Visual

units respond to all targets presented while those at the

top select the single brightest target.

The connections between the arrays are drawn as

lines ending with nodes. All of them share the same
Mexican-hat form in which similar retinal locations are

excited and distant locations inhibited. The size of the

nodes reflects the magnitude of the Mexican-hat form.

Exact parameters for each kernel are given in Appen-

dix A.

The memory arrays are arranged like a queue. The

select-all units represent the bottom of the queue and the



Fig. 6. Final network connectivity plus revisions. Connections near zero are removed and the network redrawn to show the flow of information.

Each rectangular box represents an array of units with a schematic of their population activity. Lines terminating with a round node represent a

Mexican-hat weight pattern, with the node size reflecting its magnitude. Revisions: On the left, a fixation unit makes reciprocal inhibitory connections

to the burst array and the select-one array. The connections are spatially uniform (symbolized by termination with a line instead of a node). At the

top, the self-exciting kernel of the burst outputs is enlarged to implement winner-takes-all dynamics. On the right, two revisions implement updating

of remembered locations in the select two and select all arrays. First, the self-exciting kernels are modified to remap stored locations by dynamically

including an asymmetric component to the weight pattern that is controlled by eye velocity, Ev. Second, extra inhibition is placed at the fixation zone

of each array causing targets to turn off after being fixated.
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select-one units the top. Each memory type excites the

one above it. At the top of the queue, the select-one
units excite the saccade outputs. They determine where

the outputs will burst during saccades.

The feed-forward excitation among memory types

has little effect during delay periods. It is weak relative

to the self-excitation that sustains the targets already

occupying a forward position. This is reflected in Fig. 6

by the larger size of the self-connecting nodes.

During saccades, the saccade target is cleared from
memory and this allows remaining targets to push for-
ward to fill its place. This continues until all targets have

shifted through the queue.
The network clears targets from memory using neg-

ative feedback from the burst outputs (not shown in

Fig. 6). The outputs connect to the memory arrays with

an inverted Mexican-hat weight pattern. When bursts

fire, they inhibit the corresponding active location in

the memory arrays. This turns off the target, allowing

others to shift forward and take its place. Unfortu-

nately, this strategy does not generalize to the task
with eye movements. We discuss this in more detail in



2680 J.F. Mitchell, D. Zipser / Vision Research 43 (2003) 2669–2695
the following section. An alternative strategy is pro-

posed.
8. Post-training revisions

In this section, we extend the network to solve the

problems of fixation control and updating secondary

locations. Much is already known about the behavior
and the physiology of these problems. Realistic models

have already been proposed that employ a similar shift-

invariant architecture as our model. It is relatively

simple to incorporate details from those previous mod-

els. The modifications make our network more realistic,

but do not alter the key features of its working memory,

which is our main contribution.

There are four revisions. The first involves modifica-
tions made to both the fixation input and the burst

outputs. The fixation input is replaced with a unit that is

part of the network�s dynamics. It interacts with the

burst outputs to control saccade initiation. The burst

outputs are revised in order to calibrate for this change,

and also to make their behavior more realistic. The

second revision involves modifications to select-two and

select-all memory arrays. These arrays use eye velocity
feedback to remap stored visual locations during sac-

cades. The remapping mechanism is inspired by moving

hillmodels that have been previously studied (Droulez &

Berthoz, 1991; Zhang, 1996). The third revision also

involves these memory arrays. The strategy for clearing

old targets is revised to be compatible with the new re-

mapping that occurs during saccades. The fourth revi-

sion adds noise to the units of the network. This enables
them to exhibit stochastic behavior.

8.1. Fixation control and burst outputs

The fixation input is replaced with a fixation unit that

is part of the network�s dynamics. The modifications are
depicted on the left side in Fig. 6. They are inspired by

previous models of saccade initiation in the superior

colliculus (Grossberg, Roberts, Aguilar, & Bullock,

1997; Trappenberg, Dorris, Munoz, & Klein, 2001;

Wurtz & Optican, 1994). The models characterize the

interaction between three classes of cell: the fixation,
burst, and �build-up� cells. Build-up cells, also called

visuo-movement cells in the FEF, select the location of

the next intended target immediately before saccade

initiation (Schall et al., 1995). They resemble the select-

one units in our network.

The activity of the fixation unit is determined by its

connections to the network. It makes reciprocal inhibi-

tory connections to the burst outputs and also to the
select-one units. The connection to these arrays is uni-

form (i.e. the weight to each unit is the same). It has a

positive bias input that gives it a high resting activity. It
also receives a �stop� input that is excitatory. This input
is used to hold fixation during delays in the memory

paradigm and to restore fixation when a saccade is

complete. Detailed equations for its activity are given in

Section 13.

Competition between the fixation and the burst and

select-one units controls when saccades occur. Nor-

mally, the fixation unit has a high resting activity that
completely suppresses the burst outputs. Its suppression

of the select-one units, however, is much weaker. As

those units become excited by visual inputs and other

memory types, they are able to accumulate activity for

the next desired target. The accumulation of activity

initiates the saccade by inhibiting the fixation unit. As

fixation turns off the burst units are released from their

suppression and fire at the desired location. The burst
further inhibits fixation keeping it silent through out the

saccade. Fixation can not recover until the end of the

saccade when they are excited by the �stop� input turn-
ing on.

The burst units require strong recurrent feedback to

support their competition with the fixation unit. We

increase the magnitude of their self-exciting kernel so

they have sufficient feedback (top of Fig. 6). The
strength of their self-exciting connection was weak in the

trained network. It was not necessary due to the artifi-

cial control from the fixation input. When fixation was

on, the outputs were completely suppressed, and when it

was off, they were driven in a feed-forward manner by

their select-one inputs. These two modes created the

desired on/off bursts in the output. In the present model,

the outputs must reinforce their own activity to initiate
and sustain bursts.

The revised recurrent kernel further produces more

realistic winner-takes-all dynamics among the saccade

outputs. These dynamics insure that a single peak of

activity forms among the outputs during bursts. This is

consistent with what is found experimentally. The pop-

ulation of burst cells fires at a single location even when

there are several targets and even if the movement
produced goes to a location intermediate between them

(Glimcher & Sparks, 1993; van Opstal & van Gisbergen,

1990). This is a reasonable strategy given that the eye

can only move to a single location at a time.

8.2. Updating secondary locations

The second revision involves updating that is neces-

sary during saccades. Each time the eyes move during

saccades, the position of targets on the retina also

moves. For visible targets this change is registered by a

shift on the retina. For the remembered targets it must

be generated internally.
Several mechanisms have been proposed that update

retinal locations during saccades (Droulez & Berthoz,

1991; Hahnloser, Douglas, Mahowald, & Hepp, 1994;
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Krommenhoek, Opstal, Gielen, & Gisbergen, 1993;

Mitchell & Zipser, 2001; Xing & Andersen, 2000;

Zhang, 1996). We adopt one reasonable mechanism that

was introduced by Zhang (1996) and is well suited to

shift-invariant models like our network. The mechanism

uses velocity feedback during movements to shift active

locations in the memory arrays. The shifting is contin-

uous in time and space. It resembles a �moving hill� of
activity, or in this case potentially several moving hills,

that shifts gradually across a retinotopic map.

The physiological evidence for a moving hill of ac-

tivity in saccade areas remains inconclusive (Soetedjo,

Kaneko, & Fuchs, 2001). Early work in the cat superior

colliculus demonstrated that the activity of build-up

cells during saccades is consistent with a moving hill

(Munoz & Guitton, 1991; Munoz, Guitton, & Pelisson,
1991). However, recent studies in the monkey indicate

that the activity in both burst and build-up cells is sta-

tionary during saccades (Anderson, Keller, Gandhi, &

Das, 1998; Munoz, Waitzman, & Wurtz, 1996; Soetedjo

et al., 2001).

Quasi-visual cells do undergo some kind of remap-

ping during saccades (Tian et al., 2000; Umeno &

Goldberg, 2001). They begin to respond when a re-
membered target is brought inside their retinal receptive

field. The onset of the response can precede the end of

the movement. This �remapping� keeps stored target lo-

cations spatially accurate. Whether or not it is mediated

through a moving hill mechanism remains untested. We

develop our model under the assumption that a moving

hill is involved, but only among the quasi-visual type

units. Predictions are laid out that can be experimentally
tested.

The modifications for remapping are depicted on the

right in Fig. 6. The select-two and select-all arrays,

which encode multiple targets similar to quasi-visual

cells, are altered to remap stored locations. The burst

and select-one arrays are not modified. During saccades,

they maintain a burst of activity at a fixed array location

consistent with the recent physiological findings. It is not
necessary for them to actively participate in remapping

because they receive their visual input from the other

memory types. As long as that information is updated,

subsequent motor plans remain spatially accurate.

Remapping is mediated through the self-exciting

weight pattern. The symmetric Mexican-hat pattern in-

troduced earlier has the property that each active loca-

tion remains stationary in the array. The spatial
derivative of this pattern, W 0, is an asymmetric pattern

that excites locations to one side and inhibits those on

the other side. The addition of such an asymmetric

component to the net weight pattern results in active

locations that shift along the direction of the asymme-

try. The speed and direction of the shift are controlled

by adjusting the size and sign of the asymmetric com-

ponent.
Eye velocity feedback, Ev, adjusts the asymmetric

component in the weight pattern to give the desired re-

mapping. The net weight pattern is given by

Wnet ¼ W þ aEvW 0

where W is the symmetric Mexican-hat weight pattern,
W 0 is its spatial derivative, and a is a scaling constant

(a ¼ 2). When the eye velocity is zero, the asymmetric

component is zero and has no effect. Active locations

remain stationary in the arrays. The asymmetric com-

ponent does not become involved until a saccade occurs.

In Fig. 6, the asymmetric component is depicted when a

saccade to a leftward target is made. During the leftward

saccade, the eye velocity takes on a negative value
(Ev ¼ �1) such that the asymmetry is negative (�W 0 as

shown in the bottom of the inset on the right) and active

locations are driven rightward. Active locations shift to

the right until the target has reached the fixation zone, at

which point a stop signal is generated to end the sac-

cade. The pattern is reversed when saccades are made to

the right. The eye velocity takes on a positive value

(Ev ¼ þ1) and active locations shift in the opposite di-
rection.

Details for computing the eye velocity and stop signal

are provided in Section 13. We assume that these signals

are provided as input into the FEF. Current evidence

suggest that they are encoded in brain-stem circuitry and

in the cerebellum (Scudder, Kaneko, & Fuchs, 2002).

The FEF receives feedback from these areas through the

thalamus.
One problem with the remapping solution is that it

requires that the connectivity pattern change dynami-

cally. It is unlikely that synaptic connections between

cells could change on such a fast time scale. Zhang

(1996) describes a realistic implementation that is

mathematically equivalent. It requires that there are a

pair of arrays with identical properties. The two arrays

connect to each other with the same symmetric weight
pattern, but with opposite asymmetries. One is designed

to push active locations to the right while the other

pushes them to the left. At equilibrium, the two pairs are

equally active and their asymmetries cancel out. How-

ever, during saccades their activity is modulated by eye

velocity such that one becomes more active and thus

gains more influence in their shared recurrent feedback.

Activity shifts in the direction of the more active array.
This implementation makes specific predictions about

the behavior of quasi-visual units during saccades that

we present later.
8.3. Clearing past targets

The third revision clears old targets from memory

after saccades have been completed to them. This is an

essential operation because it allows remaining targets
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to push forward in the queue so that subsequent sac-

cades can be executed.

The trained network found a solution, but it was

specific to the task without eye movements. When the

saccade outputs fired a burst, they inhibited the corre-

sponding retinal location in the memory arrays turning

off target related activity. This strategy fails when re-

mapping is involved because the spatial correspondence
between the burst in the outputs and activity in the

memory arrays breaks down. The burst in the outputs

remains stationary (consistent with physiological data)

while the active locations of the memory arrays shift.

An alternative strategy is to add negative bias to the

memory units at the fixation zone. This is depicted at

the bottom right of Fig. 6. The negative bias causes

the resting activity at these central locations to be
lower. During remapping, active locations can still pass

through the fixation zone, but if they stop there, as is the

case with the saccade target, then memory activity

gradually turns off. The time necessary for turn off acts

as a fixational dwell time. Once the target is cleared,

others can compete to initiate subsequent saccades.

8.4. Stochastic behavior

Noise is added to units to give them probabilistic

behavior. The noise is included on every time step by

multiplying each unit�s activation by a Gaussian random
variable (l ¼ 1, r ¼ 0:15). This choice is consistent with
the variability found in real cells (Softky & Koch, 1996).
9. Saccades and memory updating

We examine the updating behavior of the revised

network. Three events occur with each saccade per-

formed. First, the locations of secondary locations are
remapped to account for the movement of the eyes.

Second, once the target is fixated, it is cleared from

memory. And third, the remaining targets move forward

in the queue of memory arrays in order initiate subse-

quent saccades.

The updating activity during a sequence of three

saccades is depicted on the left in Fig. 7. The graph

conventions are the same as in Fig. 3 except that the size
of arrays is doubled (N ¼ 64) and the integration time

step has higher resolution (Dt ¼ 1 ms). On the right,

plots resembling peri-stimulus time histograms (PSTH�s)
are given. They show the average firing rate of a unit

over the time. These plots are discussed in detail in the

following section when physiological comparison are

made. Here we focus on the left of the figure, which

shows how the spatial profiles of activity shift and are
updated among the arrays.

In the trial presented, the targets are flashed in par-

allel. The brightest one is at the bottom of the 1-D visual
inputs, and the least bright is at the top. The saccade

outputs are shown in the top row of the figure. They

output bursts at the locations of each of the targets

beginning with the brightest one. The time of each sac-

cade is marked with vertical lines at the saccade onset

and offset (S1, S2, S3). It is determined by the time when

peak activity in the outputs crosses a threshold of 0.5.

During saccades the visual locations stored in mem-
ory are updated through a continuous remapping in

the select-two and select-all arrays. This is depicted in

Fig. 7 (highlighted from bottom left label). In the figure

it appears like a diagonal shift of the active locations.

The shifting stops once the active location correspond-

ing to the target has reached the center of the array (i.e.,

the fixation zone). Once the target hits fixation, a stop

signal is generated to restore fixation and suppress the
burst.

After the saccade, the old target is cleared from

memory in the select-two and select-all arrays. This

event is highlighted in Fig. 7 (bottom middle label). The

decay of memory activity is gradual, occurring over

roughly 50 ms. It happens because the old target is po-

sitioned over the fixation zone which contains a more

negative bias than other parts of the array. This bias is
not strong enough to turn off a target that passes

through fixation quickly, as can be seen earlier for the

second target which passed through fixation in the first

saccade. However, if a target waits at fixation, memory

activity associated with it decays gradually. New targets

are not selected until the old target is cleared. Thus the

gradual decay provides a dwell time for fixation.

After the old target is cleared, remaining targets shift
forward in the queue of memory arrays to take its place

and initiate subsequent saccades. The loading of new

targets is depicted in Fig. 7 for the select-one and select-

two arrays (highlighted with the bottom right label). In

the select-one array, the retinal location corresponding

to the second target begins to become active after the

first saccade. Note that the location has changed from

when it first appeared in the visual inputs. This is be-
cause the select-one array receives its input from the

select-two array, which has remapped locations during

the first saccade. The remapping keeps saccades to sec-

ondary targets spatially accurate. Following the second

saccade, the select-one units become active for the up-

dated location of the third target. They always load the

next intended target. This is consistent with the behavior

of build-up cells in the FEF.
The select-two array of units also loads new targets

following saccades. They encode the next two intended

targets in the sequence. After the first saccade, they load

into memory the third target (shown in highlighted re-

gion of Fig. 7). Before the second saccade begins, they

are active to the second and third target locations.

The loading of new targets preserves the representa-

tion of order. At every stage, the build-up units select



Fig. 7. Activity traces in the revised network. Plots have the same conventions as Fig. 3, with the spatial resolution of each array doubled to show

more detail. The network makes three saccades (S1, S2, S3). During each saccade, the visual locations stored in the select-two and select-all memory

arrays are remapped (highlighted by the bottom left label). After the saccade, the old target, which now sits at fixation, gradually decays from

memory (highlighted by the bottom middle label). Then remaining targets shift forward in the hierarchy of memory arrays to take the place of the old

target (highlighted by the bottom right label). This process continues with each saccade until no targets remain in memory. On the right, plots of the

average firing rate over time are shown in the interval preceeding the second saccade for each type. The predictive response when a target is brought

inside a quasi-visual units receptive field is highlighted on the bottom right (discussed in text).
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the next target, the select-two units select the next two

targets, and the select-all units encode any remaining.

An ordered list of each individual target and its position

in a queue can be reconstructed from this activity with

the linear transformation presented previously (Fig. 4).
If no target is remaining at a position in the queue, then

the reconstructed activity will be uniformly low and can

be distinguished by a threshold.
10. Physiological comparisons

Activity traces from single units are presented on the

right of Fig. 7. Each unit resembles a class of cell that is

found in the FEF. We examine each class in turn. First,

the revised fixation and burst units are no longer discrete

on–off signals, but instead show graded activation that is
more realistic. Second, the select-two and select-all units

resemble quasi-visual cells. Predictions for quasi-visual

cell behavior are made that can be experimentally tested.
And last, the select-one units resemble �build-up� units
which accumulate activity at the target location prior to

a saccade. Saccades are initiated as the activity reaches

a fixed threshold.
10.1. Fixation and burst units

The revised fixation and burst units have graded

levels of activity that resemble their counter-parts in the
FEF. The activity of the fixation unit is shown in the

right of Fig. 7 (bottom). In the interval before a saccade

it gradually decays to a value near zero, and remains

near zero as the burst units fire. Then near the end of the

saccade it returns with a brief transient as the stop signal

turns on to terminate the saccade. Similar dynamics are

observed among fixation neurons in the FEF (Everling,

Pare, Dorris, & Munoz, 1998; Hanes et al., 1998). The
activity of a burst unit at the target location is also

shown in the right of Fig. 7 (top). It rises rapidly to a

peak at the saccade onset, and then declines as the
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saccade finishes. Similar profiles are found in real burst

cells (Hanes et al., 1998).

The graded levels of activation occur through com-

petitive dynamics between the fixation unit and burst

units. The select-one units also play a role in this com-

petition. As they accumulate activity prior to a saccade

(second trace from the top) they begin to suppress fix-

ation. The gradual turn-off of fixation from select-one
unit suppression ultimately releases the burst units to

fire. We examine this behavior in more detail later.

10.2. Quasi-visual units

The select-two and select-all units resemble quasi-

visual cells (also called visual tonic cells). An important

feature of their activity is that they begin to respond

when a remembered target is brought into their recep-

tive field (Tian et al., 2000; Umeno & Goldberg, 2001).

This response is depicted in Fig. 7 as the second target

enters the receptive field (middle two traces). In physi-

ology, this has sometimes been called a �predictive� re-
sponse because it begins slightly before the end of the

saccade (Umeno & Goldberg, 1997, 2001). Since it is

faster than the latency of visual input, it is taken as

evidence for an internal remapping. This is consistent

with the remapping that occurs within our network.

The remapping mechanism makes two specific pre-

dictions for quasi-visual cell behavior. The first is that

they should exhibit a transient burst when a target
passes through their receptive field during saccades. An

example can be seen in the activity trace of the select-all

unit (Fig. 7, second trace from bottom). At the start of

the trace during the first saccade (S1) the unit responds

very briefly as the third target enters and leaves its re-

ceptive field. Quasi-visual cells should have similar

transients to targets that pass through their receptive

field if they use a moving hill mechanism.
The second prediction is that eye velocity should

modulate the predictive component of the remapping

response. This prediction is specific to the implementa-

tion of the moving hill. As mentioned earlier, the di-

rection and size of shifts are controlled by adding an

asymmetric component to the self-exciting weight pat-

tern. However, it is unlikely that this could be imple-

mented by dynamically changing the connectivity during
saccades. A realistic alternative involves a population of

similar units that have different biases for shifting ac-

tivity. For example, one set could have an asymmetry

that shifts activity to the right, and another set could

shift it to the left. During saccades the activity of these

populations would be modulated by eye velocity to

produce the desired shifts of stored visual locations.

In Fig. 7, the dashed square inset of the select-all unit�s
activity is expanded at the bottom of the figure to dem-

onstrate how eye velocity would modulate the remapping

response. The activity is shown for both a leftward and
rightward selective unit as a leftward saccade brings the

target inside the receptive field. The �predictive� response
of the leftward selective unit is enhanced (gray trace). For

the rightward unit, it is suppressed (black trace). Quasi-

visual cells should exhibit similar modulation if they

implement a moving hill type mechanism.

A final prediction for the quasi-visual cells is that they

should break into distinct classes with either select-two
or select-all selectivity. Tian et al. (2000) investigated the

target selectivity of quasi-visual cells but did not test for

this distinction. They tested how quasi-visual cells re-

spond when either the next or second to next target is

brought inside their receptive field in the memory-gui-

ded task. The response was nearly equal regardless of

the target. This behavior is consistent with both the se-

lect-two or select-all units which respond equally to the
next two targets.

Further tests are necessary to resolve the distinction

between select-two and select-all type units. The tests

performed to date only consider when two targets remain

in memory. If tested when three targets remain, we pre-

dict that some cells should respond equally to the next

two targets, but not the third, while others will respond

well to all three. Tests with more targets could further
reveal if other selectivities are present (i.e., select-three,

select-four, etc.). We consider this in the discussion.

10.3. Build-up units

The select-one units resemble build-up cells (also called

visuo-movement cells). They select the location of the

next intended target (Schall et al., 1995). The selection

occurs through a gradual �build-up� of activity at the

target location prior to the saccade. An example of the

build-up is shown on the right in Fig. 7 (second from top).

As build-up activity accumulates it inhibits and turns off

fixation. At the same time, the select-one units are excit-
ing the burst outputs. This enables burst units to over-

come suppression from fixation and initiate a saccade.

We tested the network in a �no go� paradigm that has

been used to study saccade timing and its relation to

build-up activity in the FEF (Hanes et al., 1998). Three

targets were flashed in parallel in the visual input as

shown in Fig. 7. The network selects the brightest of the

three for a saccade. The latency of that saccade varies
stochastically due to noise in the network units. We

implemented a �no go� condition by activating the stop

input 350 ms into the trial. It excites the fixation unit

thus suppressing saccades.

The resulting traces from several trials in the �no go�
paradigm are presented in Fig. 8. Traces are shown for

a select-one unit at the target location, and also for a

select-two unit. Those traces that result in a saccade are
shown in black with upward arrows indicating the start

of the burst. Those where the saccade was successfully

stopped are shown in gray.
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brightest one, followed by a similar �distractor� with nearly the same

brightness, and a non-similar �distractor� still less bright (intensities of
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Saccades are initiated when the build-up activity of
the select-one unit reaches and persists at a fixed

threshold. If it fails to reach that threshold, they do not

occur. This closely mimics what is found among build-

up cells in the FEF (Hanes & Schall, 1996). In contrast,

the select-two unit is not predictive of when saccades

occur. This matches what is known for visual tonic cells

in the FEF (Murthy, Thompson, & Schall, 2001).

Recent physiological studies also show that build-up
cells are partially activated for distractor locations during

saccades to the target (Bichot, Rao, & Schall, 2001). Our

select-one unit shares this property. In Fig. 9 (top), the

mean build-up response is shown when a target, similar

distractor, or non-similar distractor are within the unit�s
receptive field. The magnitude of the partial activation

depends on the similarity of the distractor to the target.

Distractor similarity is also reflected in the response
of select-two and select-all quasi-visual units. The select-

two units respond to both similar and non-similar di-

stractors, but their response to the non-similar distractor

is much weaker (Fig. 9, middle). The select-all units do

not distinguish distractor similarity in their response

(Fig. 9, bottom).

The response to similar and non-similar distractors

highlights that the selectivity of units in the network is
not as brittle as first presented. The select-one units do

not strictly select one target, nor do the select-two units

strictly select two. Depending on the similarity of tar-
gets, their response can vary, and can show intermediate

activation levels. What is important is that the different

classes of units have different levels of selectivity. This is

what enables them to represent the priority of targets in

a distributed fashion.
11. Behavioral comparisons

The behavior of the revised network is compared to

humans in several search tasks. It reproduces features of

human performance including spatial averaging of close

targets, probabilistic selection based on salience, latency
vs accuracy trade-offs, inhibition of return, and slower

reaction times is search with more distractors.

11.1. Spatial averaging

In double-spot experiments, the network shows

spatial averaging of close targets (Ottes, Gisbergen, &

Eggermont, 1984). In these tasks two targets of the same
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intensity are flashed briefly. Humans show two types of

behavior depending on the separation between targets.

For targets close to each other, the end-points of the first

saccade fall somewhere in between the two. For more

distant targets one of the two is selected with equal
chance.

The distribution of saccade end-points in the double-

spot task for different target separations is shown in Fig.

10A. The end-point was determined by the location of

peak activity among the burst units. Averaging occurs

for target separations within two standard deviations of

the Gaussian receptive field size. At this distance the two

targets still appear as separate peaks in the visual input.
The peak output by burst units falls somewhere between

the two visual peaks. This is consistent with that found

among real burst cells (Glimcher & Sparks, 1993; van

Opstal & van Gisbergen, 1990).

11.2. Probabilistic selection by salience

When two targets are sufficiently separated, the net-

work makes probabilistic choices for one target or the

other based on their salience. Several features may
contribute to a target�s salience. One important feature
is its brightness. As the brightness is increased for one

target its probability of being chosen increases (Schiller
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& Chou, 2000b). In Fig. 10B we plot the distribution of

saccades for two targets with different relative intensi-

ties. The probability of choosing one over the other is

plotted in gray connected dots. The probability increases

with target intensity. Other important features in sa-

lience are the latency of target onset and duration of its

presentation (Schiller & Chou, 2000a). The network

prefers targets that appear earlier and for longer dura-
tions similar to humans. Varying these features produces

similar distributions as seen for intensity in Fig. 10B.

Another feature that influences target selection is the

target�s proximity to fixation. Targets near fixation are

visited before more peripheral ones, even when they are

dimmer. A recent study in attention suggests that this

bias is due to the magnification of fixation in the cortical

representation (Carrasco & Frieder, 1997). Targets that
appear near fixation are larger relative to the small fo-

veal receptive fields as compared to the peripheral re-

ceptive fields. If the visual input to the network is revised

so targets appearing near fixation are larger, then it

produces a similar proximal bias.

11.3. Latency and accuracy

We tested if the network exhibited latency and ac-

curacy trade-offs in target selection. Ottes, Gisbergen,

and Eggermont (1985) examined this issue using the

double-spot paradigm. Two targets of different color but

equal intensity were presented with a small spatial sep-
aration. Normally, this stimulus produces saccades that

are averaged. However, if the targets remain illuminated

and subjects are instructed to emphasize accuracy in

their response over speed, then they can accurately select

a target of a given color. The accuracy of target selection

increases with the latency of the saccades.

Revisions of the network�s visual input are necessary
to perform the same test as Ottes et al. (1985). Previ-
ously we have only used phasic visual inputs that en-

coded intensity differences and turned off after only a

few time steps. However, in this task the targets must

remain illuminated indefinitely and must be identified by

their color.

The response of visual cells to color targets and di-

stractors has been studied in the FEF (Schall et al., 1995;

Thompson et al., 1996). Visual cells typically have a
phasic and tonic response component. The phasic re-

sponse does not discriminate a color target from an

equi-luminant distractor. However, it typically decays

after about 50 ms leaving a tonic response that does

discriminate the target. The tonic response is higher

when a target matching the desired search color falls

inside the receptive field.

We modeled the revised visual input as the sum of a
phasic and tonic component. The phasic component

encodes the onset of a new stimulus, but not the dis-

tinction between a color target and an equi-luminant
distractor. The tonic component persists at longer la-

tencies encoding the color differences. Instead of mod-

eling separate color channels, we assume that each

stimulus has a single color intensity, Ic, which is higher

when it matches the search color. See Section 13 for

details.

With the revised input the network produces similar

latency and accuracy trade-offs in the color selection
task. We presented two targets that had a small spatial

separation and remained illuminated indefinitely. One

target had a slightly higher color value than the other.

The network normally makes fast latency saccades that

fall between the two nearby targets (less than 200 ms). In

order to compare its performance to humans, we had to

simulate the experimental condition in which accuracy is

emphasized over speed. To do this, we partially inhib-
ited the select-one units by increasing the value of their

negative bias (from )2.8 to )5.8). This slows the rate

that activity builds-up to the threshold for saccade ini-

tiation thus leading to longer latency saccades. The

distribution of endpoints for different latencies is shown

in Fig. 10C. Averaging occurs for the shortest latency

saccades. At longer latencies the target (T1) is robustly

selected.
The increase in accuracy with latency is due to

properties of the visual inputs. The sensory information

provided becomes more accurate over time as the phasic

response decays. Saccades initiated at later delays inte-

grate more accurate information into their decision.

The integration of online visual information is an

important feature of the network. Although priorities

for targets are set in working memory from the initial
visual input, they can still be modified later if the input

changes. For example, if the input changes late in a trial

to favor a secondary target, that target can push for-

ward to the front of the queue.

The integration of late visual input could be useful to

solve tasks in which reflex responses based on pure sa-

lience must be replaced with rule-based or cognitive

choices. For example, in the anti-saccade task observers
must suppress the impulse to make a saccade to a fla-

shed target and instead move in the opposite direction

(Fischer & Weber, 1992; Hallett, 1978). Areas repre-

senting arbitrary selection criteria could provide a sup-

plementary input to the network. The supplementary

input would incur some processing delay, and thus short

latency decisions would still be based purely on target

salience. However, if the rate of build-up activity was
slowed with inhibition, then the supplementary input

would have time to influence the decision. At longer

saccade latencies, the rule-based target would be se-

lected.

These dynamics are consistent with what is known

experimentally in the anti-saccade task. During anti-

saccade trials there is an added excitation of fixation

cells with a corresponding inhibition of build-up cells
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(Everling, Dorris, & Munoz, 1998; Everling & Munoz,

2000). When reflex plans are delayed the initial build-up

activity corresponding to the reflex target decays and

new activity builds to select the voluntary target.
11.4. Inhibition of return

Next we tested whether the network exhibited inhi-

bition of return in a simple visual search task. Inhibition

of return refers to the suppression of previously visited

targets during search (Klein, 2000). Debate has sur-

rounded whether such a memory exists, and the extent
of its capacity. In some experimental conditions it ap-

pears that search is memoryless (Horowitz & Wolfe,

1998). More recent studies suggest that there is some

memory, but that it has a small capacity. The proba-

bility of return is reduced for the last 3–4 visited targets

(Gilchrist & Harvey, 2000).

The network shows a limited capacity inhibition of

return. It is tested by presenting five equally bright tar-
gets. The targets remain illuminated for an indefinite

period and the network plans saccades back and forth

between them. The order of targets selected is recorded

and the number of saccades before refixation calculated.

The distribution of saccades before refixation is plotted

in Fig. 10D. If the search is truly memoryless, the chance

of making a return is the same at all times. This gives an

exponential distribution (bottom plot). The network
produces a distribution with a peak around 2–3 saccades

(top plot). This indicates a limited inhibition for the last

2–3 targets.

What is the mechanism of inhibition of return? In the

network it results not from a memory of past targets,
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but instead from planning in advance. The targets stored

in the queue must be distinct and ordered in sequence. If

one target is selected for the current saccade, then it

must wait for saccades to subsequent targets to complete

before it can return.

The inhibition of return generated here can be dis-

tinguished experimentally from an alternative model in

which a past memory trace actively suppresses selection
(Itti & Koch, 2000). In that model the effect should

decay over time along with the memory trace. Our

model predicts that it depends on the number of inter-

vening saccades, not the temporal delay. An experiment

designed to vary inter-saccadic durations could distin-

guish these alternatives.
11.5. Reaction times and target number

The reaction time to make a saccade to the target

increases with the number of distractors when distrac-

tors resemble the target. If the target is sufficiently dis-
tinct from the distractors this effect does not necessarily

hold, and may even reverse. We test the network with

distractors that are similar to the target to determine if

its reaction times increase with distractor number. It is

tested in trials that include either a single color target, a

color target paired with a distractor of a slightly lower

color value, or a target paired with two distractors of a

slightly lower color value. The distributions of saccadic
reaction times for each case are shown in Fig. 11A.

Mean reaction time and variability of the first saccade

increases with the number of distractors. Similar be-

havior is seen in humans (Levy-Schoen, 1969; Walker,

Deubel, Schneider, & Findlay, 1997). The accuracy of
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target selection is greater for longer latency saccades

(Fig. 11B). This is again due to the properties of the

visual inputs. Their tonic response provides more ac-

curate encoding of the color differences that discriminate

the target.

We also tested if accuracy would increase as the

similarity in color between the target and the distrac-

tors was reduced. To model this, we increased the dif-
ference between the color values of the distractors and

the target. Accuracy improves as the difference is made

larger except for the fastest latency saccades which

are primarily driven by the non-selective phasic visual

input.

The latency of the first saccade of a sequence in-

creases with the length of the sequence. We repeated the

experiment in Fig. 11, and allowed the network to make
a sequence of saccades that visited first the target and

then the distractors. The mean latency of the first sac-

cade increases with the number of targets present, or

equivalently, with the number of steps in the sequence.

The average was 130 ms for a single step, 218 ms for two

steps, and 304 ms for three steps. The lengthening of first

saccade latency with sequence length is consistent with

human behavior (Sternberg, Monsell, Knoll, & Wright,
1978; Zingale & Kowler, 1987).

The inter-saccadic latency in multi-step saccades re-

flects that secondary targets are processed concurrently.

We measured the latency to initiate saccades to second

and third targets. If each saccade were programmed

from scratch, then the time necessary to initiate a sac-

cade should be similar regardless of the step. In contrast,

the average latency for the first step was 290 ms com-
pared to 118 ms for the second step and 126 ms for the

third step. This reflects the advanced planning in the

network. Humans behave similarly in multi-step tasks,

initiating secondary steps much faster or even as a

continuation of the first saccade (Becker & Jurgens,

1979; McPeek & Keller, 2001).
12. Discussion

The memory mechanism identified from training

provides a general strategy for prioritizing potential

targets and making saccades to them. It works equally
well for visual search as for planning memory-guided

saccades.

The mechanism is what we call a distributed queue.

Units have memory receptive fields for targets, but are

not selective to individual targets. Instead each type

responds to a different number of targets, selecting one,

two, or any. This hierarchy of selectivity is sufficient to

encode the same ordered information that is present in a
queue. An ordered list of targets can be extracted from it

with a simple linear transformation. During saccades the

order of targets is updated. The old target is cleared
from memory and those remaining shift forward in the

hierarchy.

The network units resemble classes of cell found in the

FEF during search and sequential saccade tasks. The

select-one units resemble build-up or visual movement

cells. They respond selectively to the next intended target,

accumulating activity immediately prior to a saccade.

When their activation reaches a fixed threshold, a saccade
is initiated. The latency of saccades can be increased on

average by exciting the fixation unit. This produces a

uniform inhibition on the select-one units that slows their

rate of build-up thus giving longer latency saccades.

The select-two and select-all memory arrays are both

consistent with what is currently known about quasi-

visual or visual tonic cells. Both classes respond equally

well when either the next or second to next target is
brought inside their receptive field (Tian et al., 2000). We

predict that if tested with more than two targets in

memory, the quasi-visual cells previously studied will

break into distinct classes, namely that some only respond

to the next two targets, while others respond to any.

The mechanism of remapping implemented in our

network also makes specific predictions for the behavior

of quasi-visual cells. First, they should exhibit a tran-
sient burst during saccades if a target passes through

their receptive field. Second, the predictive component

of their remapping response should be modulated by the

direction of the saccade that brings the target into their

receptive field.

The network reproduces several features of human

performance in search tasks. It exhibits spatial averaging

of proximal targets, probabilistic selection based on
salience and slower reaction times in visual search with

distractors. Previous neural models have shown these

effects as well (Clark, 1999; Itti & Koch, 2000; Kopecz &

Schoner, 1995). The essential trait that our network

shares with these models is its shift-invariant architec-

ture and competitive recurrent interactions.

A new mechanism for inhibition of return is identi-

fied. One previous alternative inhibits past target loca-
tions for a fixed temporal delay (Itti & Koch, 2000). This

prevents return saccades to those locations for a short

period. Inhibition of return results in our network be-

cause it is planning two to three targets in advance. No

repeat targets are included in these plans.

Our presentation has focused on one of the network

instantiations identified from training. It was the only

one that performed both sequential and parallel tasks
perfectly.

A second solution found by a smaller network pro-

vides an interesting alternative. This network contained

no hidden arrays. It learned to represent the location and

order in the array of the memory outputs (the select-all

array). It solved both sequential and parallel tasks, but

only at the shortest delays. The solution it employs is that

of a spatial map. Activity is maintained for each target
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location in a single array. The order of the targets is en-

coded by graded levels of response at each of their loca-

tions. The response is highest for the first target, and

progressively weaker for the second and third. At short

delays, this is sufficient to program the saccades. At long

delays the graded activity decays and weaker targets are

forgotten.

It is likely that some mixture of spatial map and
distributed queue strategies appear in the FEF. The

queue is superior in that it is robust to decay, but it also

requires several distinct classes of cells to operate. Each

must have a different selectivity to targets. A more effi-

cient strategy for larger numbers of targets may be the

spatial map. Although it is not robust to delay, several

targets can be encoded by a single type of unit.

The number of targets encoded by a queue could be
tested behaviorally. Humans can perform memory-gui-

ded sequences with five targets (Ditterich, Eggert, &

Straube, 1998). The extent to which this capacity

changes for different delays has not been examined

systematically. Those targets encoded by a distributed

queue should either not decay, or decay with a different

time course from those encoded by a spatial map. By

testing with multiple targets a different delays it may be
possible to distinguish the capacity of the queue.

We have introduced a new strategy for training

neural networks in sequential decision tasks. In our

strategy, a trial is aborted after an incorrect decision is

made. The network is never to trained to make a second

or third decision in a sequence unless the preceding de-

cisions are correct.

A related strategy is called starting small (Elman,
1994). The networks first learn to perform simple tasks,

and then to proceed to more difficult tasks in gradual

stages.

Starting small is not well suited to learning the se-

quential saccade task. Networks can learn a simple task

with a single target, but they fail to adapt when a second

target is added. Since they have never seen trials with two

targets, they do not know which one to choose first, or
that ultimately both must be represented. They must

unlearn idiosyncrasies acquired from the simple task.

The same difficulty arises going from two to three targets.

In our approach the task difficulty remains constant,

but training on later decisions is contingent on preceding

decisions being correct. This insures that correct state

information is represented at each point in the trial. This

may be useful for learning other types of sequential task.
13. Methods

13.1. The simulated saccade task

The saccade task is intended to be similar to the tri-

ple-step paradigm (Tian et al., 2000). Targets are flashed
in sequence. After a delay the fixation cue disappears

and saccades are made to each target in the order pre-

sented.

The number of targets presented in each trial varies in

our task. It can be one, two, or three targets. Trials are

randomly interleaved with a 20% chance of a one or a

two target trial, and a 60% chance of a three target trial.

The locations of the targets are chosen at random
from a continuous range between 0 and 32. The total

size of the input array is 32. To insure that two targets

do not overlap, a minimum separation of d ¼ 6 units is

required. Random locations are generated until this

criteria is met.

Target intensity is chosen in a semi-random manner.

In the sequential task, the intensity is set as a Gaussian

random variable with mean of 1.0 and standard devia-
tion of 0.05. In the parallel task, the three targets have

intensities selected with uniform chance between 0.7 and

1.3 such that no two targets are closer than 0.15.

The duration of trial events is chosen so their relative

sizes are on average similar to that of the triple-step

paradigm (Tian et al., 2000). In the triple-step task

targets are presented for roughly 60 ms. The duration

of saccadic eye movements was similar on average. We
choose 3 time steps for the duration of presentations

and saccades in our task. Thus one step is comparable

to 20 ms.

The timing of events occurs at random. Otherwise,

networks can develop solutions that rely on its specifics.

The interval between the presentation of targets in a

sequence is chosen randomly between 3 and 6 time steps

with a uniform chance. The interval between saccades is
chosen in the same fashion. The delay between the

presentation of the last target and the first saccade is

chosen from an exponential distribution with a mean of

3 time steps.
13.2. Input and output encodings

The visual inputs have response properties similar to

visual cells in the FEF. They consist of an array of 32

units (Fig. 1 shows only 8 to ease illustration). Each has

a light sensitive Gaussian receptive field. Their temporal

response has a phasic component that turns off after 3
time steps. The response at array location i to a target

with intensity I at retinal location x and appearing at

time tonset is given by

Phasic½i	 ¼ I 
 e
�ði�xÞ2

2r2 
 eðtonset�tÞ=sV if t � tonset < 3
0 else

(

ð7Þ

with r ¼ 2 and sV ¼ 3 time steps. The response decays

exponentially following the stimulus onset and then

completely turns-off after three time steps.
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A second input to the network is the fixation unit. It

maintains a high resting activity of 1.0, and then drops

to 0.0 on time steps at which a saccade should be exe-

cuted.

The saccade outputs are similar to burst cells in the

FEF. They also consist of an array of 32 units. They

remain silent with zero activity until the time of a sac-

cade. Then a burst occurs at the target location. The
desired activation of a burst unit at location i for a

saccade to retinal location x is given by

Saccade½i	 ¼ e
�ði�xÞ2

2r2 ð8Þ

with the receptive field size the same as the visual units,

r ¼ 2. Outputs maintain a constant level of activation
throughout the period of the saccade, which lasts for

3 time steps.

The memory outputs respond equally to all of the

remaining targets. They consist of an array of 32 units.

If there are T targets remaining in the ongoing sequence,

then the desired activation of memory output at location

i is given as

Memory½i	 ¼
XT
t

e
�ði�xt Þ2

2r2 ð9Þ

where xt is the retinal location of each target. The re-

ceptive field size is the same as the visual and saccade

units, r ¼ 2. Their response to a target begins as soon as

it appears in visual input and continues until a saccade
has been made to it. They maintain a constant level of

activity through delay periods.

13.3. Computing synaptic currents by convolutions

The synaptic input currents to units can be rewritten

as a sum of convolutions between weight kernels, ~WW ,

with arrays of activity, ~YY . We use the over right arrow
to denote an array of size N ¼ 32. The convolution
~SS ¼ ~WW 
~YY is computed by

S½i	 ¼
XN
n¼1

W ½n	Y ½i� n	 ð10Þ

where S½i	 is the value at location i in the array ~SS. Note
that the index into ~YY , given by (i� n), may be negative

or exceed N . To eliminate boundaries, we assume that

the arrays wrap around themselves to form a circle in

which the last unit is adjacent to the first. A negative

index becomes ðði� nÞ þ NÞ and an index greater than
N becomes ðði� nÞ � NÞ.

The equations for the net synaptic input currents to

the outputs and hidden types are similar. The net cur-

rent, ~nni, to each array at time t þ 1 is given by

~nniðt þ 1Þ ¼
X
j

~WWij 
~YYjðtÞ þ ~WWiv 
 ~VV ðtÞ þ Bi þ Fi 
 FixðtÞ

ð11Þ
where ~VV ðtÞ is the visual inputs, ~WWij and ~WWiv are the weight

kernels, Bi is a bias weight, and Fi is the fixation weight

and FixðtÞ is the fixation input. The saccade outputs do

not receive direct visual input (~WW1v ¼ 0) and the memory

outputs and hidden units do not receive fixation input

(F2 ¼ F3 ¼ F4 ¼ 0).

The speed of computing convolutions is much faster

if it is done using the FFT (Press et al., 1988). This is
possible because the arrays are shift-invariant. The array

size must be chosen to be a power of 2. Similar speed ups

are also possible for computing the convolutions and

correlations that occur in the back-propagation of error

during training.
13.4. Training the neural network

The cost function optimized contains three terms. It

is given by

E ¼ 1

2

X
k

ðY1½k	
 � Y1½k	Þ2 þ
k1
2

X
m

ðY2½m	
 � Y2½m	Þ2

þ k2
2

X
n

y½n	2 ð12Þ

where Y 
 is the desired activity and Y is the activity of

the network outputs. The first sum with k indexes the

saccade outputs, the second sum with m indexes the

memory outputs, and last sum with n indexes all units

(both hidden and output). The first term trains the
saccade outputs to produce the desired burst activity.

The second term trains the memory outputs to maintain

a trace of targets until saccades are made to them. It is

essential for overcoming long temporal delays in the

task. Its relative contribution to the error is set to be

small so it does not dominate the saccade outputs which

are more difficult to learn (k1 ¼ 0:1). The last term en-

courages low activity for every unit. It is motivated in
that real neurons have low average firing rates. The

speed of learning is faster when it is included. It makes a

small contribution to the error (k2 ¼ 0:001).
Gradient descent is performed in the space of biases

and weight kernel parameters. This requires two modi-

fications to the basic back propagation algorithm. The

first is standard for shift-invariant networks. It is called

weight sharing. It forces each of the weight patterns in
an array to be identical and for each of them to have the

same bias value (Fukushima, 1980; LeCun et al., 1989;

Rumelhart et al., 1986).

The second modification takes the desired changes to

weight kernels (computed from weight sharing) and

computes the desired change to the difference of Gaus-

sians parameters (B, A1, r1, A2, r2) for each weight

kernel in the network. On each cycle in training, the
kernel parameters are updated first, and then the

weights are recomputed from them. This constrains

gradient descent to the space of DOG parameters. This,
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along with weight sharing, reduces the complexity of the

model.

Weight sharing is implemented on each cycle in

training. If the weight to unit i from pre-synaptic input j
is given by w½i	½j	, then w½i	½j	 ¼ w½i� s	½j� s	 for every
shift s. Thus we only need to store the weights for one of
the units. That single set of weights defines what we call

the weight kernel. The back propagation algorithm
computes the changes for weights to every unit as

Dwij ¼ �g
oE
owij

ð13Þ

To impose sharing these changes must be averaged

across the units for each weight in the kernel. That is

Dwj ¼
P

i DwiðiþjÞ

N
ð14Þ

where N is the array size. In some cases the index ðiþ jÞ
may exceed the array size. We assume the array wraps

around itself to avoid these boundaries. The weights

from fixation and bias inputs are also shared. They are

averaged over all units, and a single value stored. All

these calculations can be done in the Fourier domain
for faster performance.

Gradient descent is performed on the parameters that

define the kernels instead of the weights themselves.

Using the chain rule, we derive how each DOG pa-

rameter, p, should change to reduce the error. It is given
as

Dp ¼ �g
oE
op

¼ �g
X
j

oE
owj

owj

op
¼

X
j

Dwj
owj

op
ð15Þ

where j indexes over the weights in the kernel.

Although the update Dp moves in a direction to

minimize E, the size of its steps is poorly scaled. This is
because the magnitude of the derivatives of the weights
with respect to the different DOG parameters vary

substantially and thus require a small learning rate to

insure stability for all of them. Faster learning is possible

if the step sizes are normalized by the magnitude of their

derivatives. We use the update Dp0 ¼ 1
Zp

Dp where Zp is

the square root of the sum of squared derivatives

Z2
p ¼

X
j

owj

op

� �2

ð16Þ

At the start of training, the parameters for the weight

kernels are initialized randomly in a region close to

winner-takes-all behavior. This is done first by setting

the bias parameter to a small negative value, B ¼ �0:1,
and the width parameters, r1 and r2, as 1.0 and 2.5.

Then the amplitude parameters are chosen randomly.
For the weight kernel that connects arrays to themselves

and to visual input (Wii and Wiv) the excitatory amplitude

is chosen between 1 and 4 and the inhibitory amplitude
between )0.5 and )1.5. This produces winner-takes-all
dynamics on average. For other kernels amplitudes are

initialized randomly to small random values between

�0.2 and 0.2.

13.5. Revisions of the fixation signal

The fixation signal was implemented as a single

neuron-like unit with connections to the burst and se-

lect-one arrays. The synaptic input, netf , at time t þ 1

was given as

netfðt þ 1Þ ¼ xstopðtÞ þ 2:5xfðtÞ � 6Y0ðtÞ � 18Y1ðtÞ ð17Þ

where xstop is the value of the stop input activity at time

t, xf is the value of fixation activity, Y0 is the average

activity of the array of burst outputs, and Y1 is the av-
erage activity of the array of select-one units. The fixa-

tion activation on the next time step, xfðt þ 1Þ, is

computed from the synaptic input as described previ-

ously for the other network units using a continuous
time integration followed by a sigmoid shaped non-

linearity.

The fixation unit inhibits each of the units in the burst

and select-one arrays. It connects to each of the burst

units with a strong inhibitory weight of )12, and to each
of the select-one units with a weight of )4. In this way,

fixation competes with burst and select-one arrays for

activity.

13.6. The ‘stop’ input and target clearing

The remapping during saccades was terminated by
turning on the stop input. The activity in the stop input

rose sharply as the end of the saccade was approached.

During the saccade, we tracked the active location cor-

responding to the target in the select-all array of units.

The stop input activity was then given as

xstop ¼
3:1 
 ð8� DÞ if D < 8

0 else

�
ð18Þ

where D was the distance (in array units) of the target�s
active location from the fixation zone. The excitation of

fixation from the stop input ultimately turned off the

saccade. Once the saccade ended, the stop input was
reset to zero. A saccade was considered �turned off� if the
maximum activation in the array of burst outputs fell

below a value 0.5 (conversely a saccade was considered

�turned on� when the maximum activation exceeded that

value). In the memory task the stop input was held on to

a value of 4.0 to prevent saccade initiation during the

delay period.

Clearing at the fixation zone was implemented by
adding a negative bias to the units at fixation. A

Gaussian kernel with spatial width r ¼ 2:0 and negative

magnitude of )2 and )1 was added respectively to the
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bias of units at the centers of the select-all and select-two

arrays. Activity at the center thus decays clearing fixated

targets from memory.

13.7. Revised visual inputs

We modeled the revised visual input as the sum of a

phasic and tonic component for color discrimination
tasks. The phasic component encodes the onset of a new

stimulus, but not the distinction between a colored tar-

get and an equi-luminant distractor. The tonic compo-

nent which dominates at longer latencies does encode

the color differences. Instead of modeling separate color

channels, we assume each stimulus has a color intensity,

Ic, which is higher for a stimulus that matches the de-

sired search color. These details are consistent with the
selection behavior of visual cells in FEF during search

tasks (Schall et al., 1995; Thompson et al., 1996).

The phasic component of the response resembles a

magnocellular response in early visual processing. It is

less accurate spatially and does not encode the color or

form of stimuli. The activation at array location i is
given as

Phasic½i	 ¼ e
�ði�xÞ2

2r2p 
 eðtonset�tÞ=sv ð19Þ

with rp ¼ 4, sv ¼ 60 ms, and tonset is the time of stimulus
onset. In modeling reaction time data we assume an

additional delay of 67 ms to the value of tonset in order to
model the time it takes a stimulus presented on the

retina to reach the FEF visual cells. This value is con-

sistent with typical visual latencies of FEF cells
Thompson et al. (1996).

The tonic component of the visual response is more

accurate spatially and encodes color differences between

the target and the distractors. The activation for a target

of color intensity Ic at array location i is

Tonic½i	 ¼ e
�ði�xÞ2

2r2t 
 Ic 
 0:2 
 ð1� eðtonset�tÞ=svÞ ð20Þ

with Ic the color intensity, tonset and sv defined the same

as above, and rt ¼ 2. This response grows from the

stimulus onset until it reaches a constant value that is

about 20% the magnitude of the initial phasic response.
Appendix A. Revised network parameters

The code for a Matlab demo is available at

www.snl.salk.edu/~jude.

N ¼ 64 (number of units in each array)

Dt ¼ 1 ms

B1 ¼ B2 ¼ B3 ¼ B4 ¼ �2:8
A2 ¼ 0:2 
 A1 for all kernels
r1 ¼ 0:88 and r2 ¼ 2:03 for all kernels
Kernel B A1

~WW2v )0.05 +2.00
~WW3v )0.05 +2.00
~WW4v )0.05 +1.00
~WW11 )1.50 +15.0
~WW12

~WW13

~WW14 )0.60 +4.0
~WW21

~WW22 )0.10 +6.0
~WW23

~WW24

~WW31

~WW32 )0.10 +2.0
~WW33 )0.40 +6.0
~WW34

~WW41

~WW42

~WW43 )0.10 +3.0
~WW44 )0.60 +8.0
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