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Abstract
Visual motion processing is a well-established model system for studying neural population codes in primates. The
common marmoset, a small new world primate, offers unparalleled opportunities to probe these population codes in key
motion processing areas, such as cortical areas MT and MST, because these areas are accessible for imaging and recording
at the cortical surface. However, little is currently known about the perceptual abilities of the marmoset. Here, we introduce
a paradigm for studying motion perception in the marmoset and compare their psychophysical performance with human
observers. We trained two marmosets to perform a motion estimation task in which they provided an analog report of their
perceived direction of motion with an eye movement to a ring that surrounded the motion stimulus. Marmosets and
humans exhibited similar trade-offs in speed versus accuracy: errors were larger and reaction times were longer as the
strength of the motion signal was reduced. Reverse correlation on the temporal fluctuations in motion direction revealed
that both species exhibited short integration windows; however, marmosets had substantially less nondecision time than
humans. Our results provide the first quantification of motion perception in the marmoset and demonstrate several
advantages to using analog estimation tasks.

Key words: decision-making, marmoset monkey, motion estimation, psychophysics, vision

Introduction
The study of visual motion processing in the primate brain has
received considerable attention as a model system for studying
neural population codes. This is because the functional neu-
roanatomy has been well characterized (Maunsell and Vanessen
1983; Movshon and Newsome 1996), stimuli can be easily param-
eterized, and the motion processing areas of the primate brain
have neurons with response properties that are well matched
to perceptual features of motion (Born and Bradley 2005) as
well as the sensitivity of psychophysical observers on simple
motion discrimination tasks (Britten et al. 1992; Purushothaman
and Bradley 2005; Cohen and Newsome 2008). As such, motion
processing has proven to be a fertile paradigm for studying
population codes (Jazayeri and Movshon 2007a, 2007b; Beck et al.

2008) and even higher cognitive processes such as learning and
decision-making (Gold and Shadlen 2007; Law and Gold 2009).

However, our understanding of the neural code at the circuit
level has been hampered by the animal models available for
study. One obstacle for circuit level manipulation and measure-
ment in the macaque is that key areas of interest, the mid-
dle temporal (MT) and medial superior temporal (MST) areas,
lie buried within the superior temporal sulcus, thus limiting
the utility of techniques such as two-photon calcium imaging
or large-scale array recordings. At the same time, the neural
representation for motion processing in rodents, where those
techniques have been well developed, do not appear to involve
comparable neural circuits. In contrast to primates, direction
selectivity in rodents has a substantial retinal source (Hillier
et al. 2017; Shi et al. 2017), areas homologous to MT/MST have
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not been identified, and psychophysical behavior is remarkably
insensitive to large moving stimuli (Marques et al. 2018).

The marmoset monkey offers a potential opportunity for
studying neural population codes that underlie motion process-
ing using modern methods. Recently, the marmoset monkey has
emerged as a model for visual systems neuroscience (Mitchell et
al. 2014, 2015; Johnston et al. 2018) that may overcome several
long-standing limitations of other primate species. The mar-
moset has established homologies with the macaque and the
human brain (Solomon and Rosa 2014), including quantitative
similarities in motion processing circuitry and function (Lui and
Rosa 2015). Importantly, unlike in macaques or humans, most
cortical areas in the marmoset brain lie on the surface and
are readily accessible for recording (Solomon et al. 2011, 2015;
Sadakane et al. 2015; Zavitz et al. 2016, 2017). At present, there
is a concerted effort by several international groups to develop
transgenic marmoset models (Sasaki et al. 2009; Izpisua Bel-
monte et al. 2015; Okano et al. 2016), providing novel molecular
tools, such as gCaMP6 lines for use in two photon imaging (Park
et al. 2016), as well as genetic models of human mental disease
(Okano et al. 2016).

While the neuroanatomy and basic sensory processing of
visual motion stimuli have been studied in marmosets (Solomon
et al. 2011; Zavitz et al. 2016; Chaplin et al. 2017), little is
known about their perceptual abilities. Here, we introduce a
novel motion estimation task that is ideally suited for studying
motion perception in marmosets. Two marmosets were trained
to indicate their perceived direction of motion by making a
saccadic eye movement to a “target ring” that surrounded the
motion stimulus. Beyond the utility for training, estimation
tasks can offer more information about the perceptual process
than traditional classification or discrimination paradigms (Pilly
and Seitz 2009) and have been useful for studying readout
mechanisms for motion perception (Nichols and Newsome 2002;
Webb et al. 2007, 2011; Jazayeri and Movshon 2007a, 2007b). The
trial-by-trial distribution of responses from an estimation task
supports a much richer description of the underlying perceptual
process than binary reports from traditional 2AFC paradigms
(Laquitaine and Gardner 2018).

We show that the precision of the marmosets’ perceptual
reports varies systematically with the strength of the motion
signal in a similar manner to human observers. We then
compare the performance of the marmosets with that of
human observers performing the same estimation task and,
using behavioral reverse correlation, directly quantify both
marmoset and human temporal integration properties. In
general, marmoset behavior closely resembled human perfor-
mance, except that marmosets were less precise, had a larger
dependence of reaction time on task difficulty, and required
less time to plan an eye movement than human subjects.
Taken together with known physiological properties of motion
processing areas in marmosets, these results establish the
marmoset monkey as a viable model system for human motion
perception and for studying the underlying neural population
codes.

Materials and Methods
Data were collected from two adult male marmoset monkeys
(Callithrix jacchus) and four human psychophysical observers.
All surgical and experimental procedures involving the mar-
mosets were approved by the Institutional Animal Care and
Use Committee at the University of Rochester, and by the

Animal Ethics Committee at Monash University. All procedures
involving human psychophysical observers were approved
by the Research Subjects Review Board at the University of
Rochester.

Surgical Procedures

Marmosets were implanted with a titanium head-post to stabi-
lize their head during behavioral training. Surgical procedures
were performed under aseptic conditions and were identical to
those described previously (Nummela et al. 2017).

Visual Stimuli and Behavioral Training

Visual stimuli were generated in Matlab (The Mathworks, Inc.)
and presented using the Psychophysics toolbox (Brainard 1997)
at a frame rate of 120 Hz on a LCD monitor (XT2411z; BenQ)
placed 60 cm in front of the animals. The monitor had a mean
luminance of 115 cd/m2 and resolution of 1920 × 1080 pixels
(W × H) covering 48 × 28◦ (W × H) of visual angle.

Marmosets sat in a purpose-built chair (Remington et al.
2012) with their head fixed by way of the implanted head-post.
After habituating to being head-fixed, both marmosets were
trained to maintain fixation within a small window around a
fixation target presented at the center of the screen. Marmosets
received liquid reward for maintaining fixation on this central
target. After fixation training, but prior to training on the motion
estimation task, both animals were trained to make visually
guided center-out saccades in a grating detection task (Num-
mela et al. 2017; Subject S).

Both subjects were then initially trained to perform a coarsely
discretized version of the motion estimation task (Fig. 1A). To
initiate each trial, the marmoset was required to maintain fix-
ation within a small window (radius 1.8◦) around a fixation
target presented in the center of a uniform gray screen of mean
luminance. This fixation target consisted of two concentric black
(0.5 cd/m2) and white (230 cd/m2) circles, 0.3◦ and 0.6◦ in diame-
ter, respectively. After a prescribed fixation period of 200–500 ms
(drawn randomly on each trial, from a uniform distribution), a
random pattern of dots (40 dots each 0.2◦ in diameter; luminance
97 cd/m2) was presented within a circular aperture 7◦ in diam-
eter, centered on the fixation target. During initial training, the
dots moved coherently at a speed of 15◦/s in one of eight possible
directions, drawn randomly on each trial from the set {0◦, 45◦,
. . ., 315◦}. Dots had a limited lifetime of 50 ms (six frames). At
the start of each trial, each dot was assigned an age (in frames)
drawn randomly from a uniform distribution between 0 and 6
frames. At the end of their lifetime, dots were redrawn at a
random position within the stimulus aperture and their age was
reset to zero. Dots that exited the aperture were replaced on the
opposite side of the aperture.

The marmoset was required to maintain fixation on the
central target for a minimum duration of 100 ms after onset of
the motion stimulus, after which the fixation target dimmed,
signaling that the marmoset was free to indicate the perceived
direction of the motion by making an eye movement to one of
eight possible choice targets. The choice targets were small gray
(120 cd/m2) circles, 0.6◦ in diameter, presented at eight equally
spaced points, {0◦, 45◦, . . ., 315◦}, around a circle 10.6◦ in diameter
centered on the central fixation target. One choice target corre-
sponded to each of the possible motion directions. Task timing
is illustrated schematically in Figure 1B. To discourage guessing
as a strategy, we imposed a minimum interval between trials of
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Figure 1. Visual stimuli and behavioral task. (A) Marmosets were trained to
maintain fixation within a window 2◦ in diameter around a target presented

at the center of the screen (1). A random pattern of dots was then presented
within a circular aperture 7◦ in diameter centered on the fixation target (2).
The dots moved at a speed of 15◦/s in one of eight possible directions equally
distributed between 0 and 360◦. Coincident with the onset of the random dot

pattern, eight small choice targets were presented, equally spaced around a
ring, 10.6◦ in diameter, concentric with the central fixation target. Marmosets
received a liquid reward for correctly reporting the direction of motion by making
a saccade to one of the choice targets (3). On a proportion of trials, marmosets

received an overt cue, consisting of a small high contrast Gabor patch, presented
at the location of the correct choice target. On these trials, marmosets could
obtain the reward by making an eye movement to the cued target location

without integrating the motion stimulus. These cued trials served to ensure a
sufficiently high rate of reward to keep the marmosets engaged with the task.
Over the course of training, the proportion of cued trials was gradually reduced.
(B) Sequence of trial events. After a fixation period of 200–500 ms (1), the random

dot pattern appeared (2). Marmosets were required to maintain fixation on the
central target for a minimum duration of 100 ms after appearance of the motion
stimulus, after which the fixation target dimmed and the marmosets were free
to indicate the perceived direction of motion by making an eye movement to

one of the choice targets. Both the fixation point and the random dot pattern
were extinguished if the marmoset broke fixation or after a maximum period of
600 ms, whichever came first (3). (C) After initial training, the number of possible
motion directions was increased from 8 to 50 over the course of several weeks

and the discrete choice targets were replaced by a continuous ring. The strength
of the motion signal was then varied by assigning to each dot a direction drawn
from a uniform generating distribution centered on the target motion direction.

≥2 s, during which the monitor displayed a uniform gray screen
of mean luminance.

Marmosets received a small liquid reward (typically 5–10 μL)
for initiating a trial (i.e., after the initial fixation period, before
onset of the motion stimulus) and again at the end of the trial
for correctly reporting the direction of motion. The volume of
the latter reward was scaled according to the angular error in
the marmoset’s choice such that larger errors received smaller
rewards. Errors less than 8◦ from the true motion direction
received the maximal reward (typically 20–40 μL) while errors
greater than 27◦ were unrewarded (i.e., 0 μL). This reward sched-
ule served to ensure a sufficient rate of reward to keep the
marmosets engaged with the task. Marmosets also received
visual feedback presented at the location of the correct choice
target. Correct choices were indicated by presentation of a small
marmoset face. Incorrect choices were indicated by presentation
of a dark gray (57 cd/m2) circle 2.7◦ in diameter surrounding the
correct choice target.

During the training period, on a proportion of trials, mar-
mosets received an overt cue as to the correct choice target.
This cue consisted of a small high contrast Gabor patch (100%
contrast, 4 cycles/◦, 2.7◦ in diameter) presented at the location
of the correct choice target. On these cued trials, marmosets
could obtain the reward by making an eye movement to this
cue, without regard to the presented motion direction (although
the motion direction was always predictive of the cue and the
reward). During initial training, the cued trials served to ensure
a sufficiently high rate of reward to keep the marmosets engaged
with the task and help establish the association between the
motion direction, the choice targets, and the reward. Over the
course of training, the proportion of cued trials was gradually
reduced and eventually eliminated by delaying the time window
during which the cue appeared, encouraging the marmosets to
anticipate its location based on the direction of motion pre-
sented.

Behavioral Task

After the initial training regimen described above, the difficulty
of the estimation task was manipulated in two ways (Fig. 1C).
First, the number of possible motion directions was progres-
sively increased, over several weeks, until the motion direction
was selected from 50 possible directions, drawn randomly on
each trial, from the set {0◦, 7.2◦, . . ., 352.8◦}. Once the number
of possible motion directions exceeded 18, the discrete choice
targets were replaced with a continuous ring, 10.6◦ in diameter,
drawn with the same luminance as the original choice targets.
In this configuration, the marmosets’ behavioral reports were
continuous around this ring, similar to the motion estimation
task described by Nichols and Newsome (2002). Second, we then
varied the difficulty of the task by adjusting the range of dot
directions on each trial by sampling the direction assigned to
each dot from a uniform generating distribution. The mean of
this generating distribution defined the target motion direction
(drawn randomly on each trial from the set of 50 possible motion
directions) and the width of the generating distribution defined
the range of individual dot motion directions. This manipulation
is similar to that described by (Zaksas and Pasternak 2006).
The width, or range, of the generating distribution was drawn
randomly on each trial from the set {0◦, 45◦, 90◦, . . ., 360◦}. In
the analyses below, we describe behavioral performance as a
function of signal strength (SS), given by SS = 1–Range/360.
SS = 1 corresponds to coherent motion while SS = 0 corresponds
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to random, incoherent motion. To ensure a sufficient rate of
reward and keep the marmosets engaged with the task, the more
difficult conditions, SS ≤ 0.5, were presented on only 35% of
trials while the remaining 65% of trials were assigned SS > 0.5.

Recording and Analysis of Eye Position

Eye position was sampled continuously at 220 Hz using an
infrared eye tracker (USB-220, Arrington Research). Methods for
calibrating the eye tracker in each daily session were identi-
cal to those described previously (Nummela et al. 2017). This
calibration procedure set the offset and gain (horizontal and
vertical) of the eye tracking system. To mitigate any uncalibrated
rotational misalignment (around the optical axis) of the eye
tracking camera, which would be manifested in our data as a
nonzero bias in subjects’ errors, we computed the mean angular
error over all trials of the motion estimation task for each sub-
ject and subtracted this rotational component prior to further
analysis.

All analyses were performed off-line in Matlab (The Math-
works, Inc.). Saccadic eye movements were identified automat-
ically using a combination of velocity and acceleration thresh-
olds. First, the raw eye position signals were resampled at 1 kHz,
and horizontal and vertical eye velocity signals were calculated
using a finite impulse response digital differentiating filter (Mat-
lab function lpfirdd() (Chen 2003) with parameter N = 16 and a
low-pass transition band of 50–80 Hz; this filter has a − 3 dB
passband of 19–69 Hz). Horizontal and vertical eye acceleration
signals were calculated by differentiation of the velocity signals
using the same differentiating filter. Negative going zero cross-
ings in the eye acceleration signal were identified and marked as
candidate saccades. These points correspond to local maxima in
the eye velocity signal. Eye velocity and acceleration signals were
then examined within a 150 ms window around each candidate
saccade. Candidate saccades were retained provided that eye
velocity exceeded 10◦/s and eye acceleration exceeded 5000◦/s2.
Saccade start and end points were determined as the point
preceding and following the peak in the eye velocity signal at
which eye velocity crossed the 10◦/s threshold.

Drift in eye position during presentation of the motion stim-
ulus was quantified as follows. Raw horizontal and vertical eye
position signals were first smoothed with a median filter (Matlab
function medfilt1() with parameter N = 3; at the sampling fre-
quency of 220 Hz, this filter has a low-pass characteristic with
a − 3 dB cut-off frequency of ∼50 Hz) to minimize high frequency
noise from the eye tracking camera. The smoothed eye position
signals were then resampled at 1 kHz, and horizontal and ver-
tical eye velocity signals were calculated using a finite impulse
response digital differentiating filter (lpfirdd() (Chen 2003) with
parameter N = 16 and a low-pass transition band of 30–50 Hz;
this filter has a − 3 dB passband of 9–49 Hz. Segments beginning
20 ms before and extending until 20 ms after each saccadic eye
movement (identified as described above) were then removed,
to minimize saccadic intrusion in the drift velocity estimates.
Systematic drift in the direction of the motion stimulus was
quantified by projecting the horizontal and vertical eye velocity
signals onto the stimulus motion direction, adding them, and
then averaging the resultant across all trials for each of the
motion SSs. Missing values, due to removal of saccades, did not
contribute to the average across trials. The average eye velocity
traces were characterized by a period immediately after motion
onset during which the eye remained stationary, followed by
a period of increasing drift velocity terminated by the saccade

indicating the animal’s choice (Fig. 8B). For both marmosets, the
period of drift began approximately 75 ms after onset of the
motion stimulus. The magnitude and direction of drift were
computed as the vector sum of the horizontal and vertical
eye velocity signals beginning 75 ms after onset of the motion
stimulus.

Analysis of Behavior

To quantify task performance during training, we computed the
angular error between the target motion direction on each trial
and the marmoset’s behavioral choice. Behavioral choice was
calculated as the angle of the median of the eye position mea-
sured in the first 25 ms after entering the acceptance window
on the target ring. For the majority of trials, the marmoset’s
choices are correlated with the direction of motion presented,
and their errors reflect a combination of noise in sensory pro-
cessing and the motor output. However, to account for trials
on which the marmoset’s choices reflect random guesses or
momentary lapses in attention, we modeled their errors as ran-
dom variates drawn from an additive mixture of two probability
distributions: a wrapped normal distribution (reflecting errors
in perceptual processing of the motion stimulus or in motor
execution) and a uniform distribution (reflecting nonperceptual
errors or “lapses”). This mixture model is described by three
parameters: λ, the height of the uniform distribution, represent-
ing the lapse rate, and the mean, μ, and standard deviation, σ ,
of the wrapped normal distribution. The mean (μ) represents
any systematic bias in the marmoset’s choices away from the
target motion direction. Because performance on this task is
described by deviations from the true direction, we fixed μ to
zero for our analyses, and we quantify performance by the
standard deviation (σ ) of the wrapped normal distribution. The
parameter σ represents the performance of the subjects after
accounting for lapses and captures both perceptual and motor
noise. We identified the parameters λ and σ for each session by
maximizing the likelihood of the observed errors.

To investigate the ability of marmosets to estimate the direc-
tion of noisy motion, we examined the distribution of errors
in perceptual choices over a range of motion SSs, as described
above. For this purpose, we again fit the mixture model just
described, pooling trials across all sessions.

On each trial we also recorded the marmosets’ reaction time
as the interval from the onset of the motion stimulus until the
marmosets reported their choice. In all analyses, we estimated
either standard errors or 95% confidence intervals (CI), via a
bootstrap sampling procedure (Efron and Tibshirani 1993).

Psychophysical Reverse Correlation

To estimate each subject’s temporal weighting function, we
correlated the errors in their behavioral reports with the random
fluctuations in stimulus direction that arise from the under-
lying generating distribution and the limited lifetime of the
dots. Specifically, we computed temporal weighting functions,
or kernels, in two ways: first, with all trials aligned at the
time of motion stimulus onset, and second, after realigning all
trials at the onset time of the saccade indicating the subject’s
choice. In each case, we computed Pearson’s linear correlation,
R, between the mean dot direction on each stimulus frame and
the subject’s perceptual choices, across all trials. The resulting
kernels reveal the contribution of each stimulus frame to the
subject’s perceptual choices.
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From the saccade-aligned kernels, we estimated each sub-
ject’s dead time—the time required to plan an eye movement
after reaching their decision—by fitting a single-knot linear
spline to the saccade-aligned kernel on the interval (tpk, 0),
where tpk denotes the time preceding saccade onset correspond-
ing to the peak of the temporal kernel. Specifically, we defined
the piecewise linear spline function

f(t) =
{

m (t − tdt) , tpk < t ≤ tdt

0, tdt < t ≤ 0

and fitted the slope, m, and the dead time (tdt; constrained
such that tpk < tdt ≤ 0) by minimizing the sum of squared
residuals between the spline, f(t), and the saccade aligned kernel
amplitude.

Human Psychophysics

To compare the marmosets’ performance with that of human
observers, we had four human subjects (two female and two
male, ages 21–46 years; including two of the authors J.L.Y. and
J.F.M. (humans 2 and 4, respectively), and two naïve subjects) per-
form the same motion estimation task. Each subject performed
at least four (4) sessions, on separate days. Two subjects (humans
1 and 2) underwent more extensive training (10 and 8 sessions,
respectively). Subjects had normal or corrected to normal vision
and sat comfortably with their head immobilized by way of a
bite bar. All other equipment for experiment control, stimulus
presentation, and eye tracking was identical to that used for the
marmoset experiments. All task and stimulus parameters for
the human subjects were also identical to those described above
for the marmosets, with the exception that human subjects
received instruction on the requirements of the task, received
auditory feedback rather than liquid reward, and did not receive
an overt cue on any trials. Auditory feedback consisted of 1–4
clicks based on the angular error: errors <8◦ produced four clicks
and errors >27◦ produced no auditory feedback.

Results
Initial Task Training

We trained two marmosets to perform the motion estimation
task (monkey S, 68 sessions over 166 days; monkey H, 44 ses-
sions over 92 days; Fig. 2). Initially, marmosets initiated relatively
few trials (∼100 trials/session for both monkey S and monkey
H; Fig. 2A, open symbols). However, within 1–2 sessions, both
marmosets learned the requirements of the task and, over the
course of training, reliably initiated several hundred trials per
session on average (mean ± standard error of the mean [SEM],
406 ± 17.9 trials for monkey S; 325 ± 20.7 trials for monkey H).
Of the trials initiated, both marmosets initially completed only
a small fraction (Fig. 2A, filled symbols). A trial was deemed to
be complete if the marmoset maintained fixation for at least
100 ms after onset of the random-dot motion stimulus (see
Fig. 1), made a saccade of >3◦ out of the fixation window and
towards the choice targets, and maintained that new fixation
location for at least 25 ms. For both marmosets, the number
of completed trials increased very quickly initially (e.g., within
2–3 sessions) and then more slowly thereafter. Over the course
of training, both marmosets completed approximately 100 trials
per session, on average (mean ± SEM, 123 ± 6.0 trials/session for
monkey S; 108 ± 11.1 trials/session for monkey H). As a pro-

Figure 2. Initial task training. (A) Total number of trials (open symbols) together

with the number of completed trials (filled symbols) per session. Trial counts
over 1 week after approximately 1 year (five sessions for monkey S; four sessions
for monkey H) of training are shown on the right in each panel. In these sessions,
the monkeys were performing the continuous version of the estimation task

with 50 possible motion directions and nine possible motion SSs. (B) Initially,
both marmosets based their choices on the overt cue rather than motion of
the random dot pattern. However, over the course of training, the proportion of
cued trials decreased as the onset of the cue was progressively delayed. (C) As a

measure of performance, we computed the proportion correct—the proportion
of noncued trials in each session in which the marmoset’s choice fell within
the reward window (see Material and Methods). Proportion correct for both
marmosets improved over the course of training. Solid lines show least-squares

fits of a single exponential function.

portion of the total trials initiated, monkey S showed a small
increase in trial completion rate over the course of training,
while for monkey H completion rate remained approximately
constant. Much later in training (>1 year), we withheld the
reward delivered after initial fixation and reduced the inter-
trial interval from ≥2 to ≥0.5 s. On average, both marmosets
then completed a greater number of trials within each ses-
sion (Fig. 2A). This increase was most evident for monkey H
(mean ± SEM, 200 ± 32.2 trials/session for monkey S; 340 ± 20.6
trials/session for monkey H).

As described above, on a proportion of trials early in training,
the marmosets received an overt cue as to the direction of
motion (i.e., the correct choice target). The time at which this cue
appeared, after onset of the motion stimulus, was randomized
from trial to trial. We designated each complete trial as either
“cued” or “noncued”, depending on whether the cue appeared
before or after the marmoset indicated their choice. We then
computed the number of cued trials, as a proportion of com-
pleted trials, within each session over the course of training.
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Initially, both marmosets relied heavily on the overt cue (Fig. 2B).
However, with training both marmosets learned the association
between the direction of motion of the random-dot pattern and
the correct choice target, and to base their choices on their
perception of motion direction rather than wait for the overt
cue (Fig. 2B). We encouraged this behavior, over the course of
training, by progressively delaying the temporal window within
which the cue appeared until the cue was not presented at all.

Motion Estimation Improves with Training

To quantify task performance during training, we considered
only the noncued trials within each session and computed the
proportion of trials (within each session) in which the monkey’s
choices fell within the reward window (i.e., within ±28◦ of the
target motion direction; see Materials and Methods). For both
marmosets, the proportion of correct (i.e., rewarded) choices
increased over the course of training (Fig. 2C). Proportion correct
as a function of session was fit by a single exponential func-
tion with an upper asymptote of 0.92 ± 0.02 for monkey S and
0.87 ± 0.06 for monkey H (time constant: 24.8 ± 1.6 sessions for
monkey S, 24.9 ± 5.7 sessions for monkey H).

Stimulus-Dependent Eye Drift from Fixation is Reduced
with Training

Several aspects of our paradigm were designed to minimize
pursuit eye movements evoked by the motion stimulus, and to
discourage the animals from pursuing the stimulus for reward.
Specifically, the central fixation point remained on the screen
(although at reduced contrast) for the duration of the motion
stimulus, the motion stimulus itself was of moderate contrast,
and the dots had limited lifetime (see Materials and Methods).
Nevertheless, we often observed small drifts in eye position
during fixation, evoked by presentation of the motion stimulus
(e.g., see Fig. 8A). These movements were brief and of low gain
relative to the stimulus velocity, typically less than 20–30% gain
(less than 3◦ of visual angle per second). During the brief periods
prior to the saccade choice, this drift resulted in displacements
in eye position that were typically less than 0.5◦ of visual angle,
which was not sufficient to break the task defined fixation
window. To quantify the magnitude of the stimulus evoked
drift, we projected instantaneous eye velocity (see Materials and
Methods) onto the direction of the motion stimulus, and aver-
aged the resulting eye speed signals across trials. To quantify any
systematic variation over the course of training, we pooled trials
across five sessions at a time. We then computed the average
eye speed over a 50 ms window beginning 200 ms after onset of
the motion stimulus. This window corresponded to the peak in
the average eye speed signal for both marmosets (e.g., eye speed
signals, see Fig. 8B). Early in training, both marmosets showed
average drift speeds of approximately 3◦/s (Fig. 2D). For monkey
S, drift speed decreased over the course of training (Fig. 2D;
left), likely reflecting improved fixation control. Average drift
speed for the second marmoset (monkey H) remained relatively
constant throughout training. (Fig. 2D; right). Notably, both mar-
mosets exhibit small drifts in eye position even after training.
Human observers also exhibited similar drifts in eye position,
though smaller in magnitude (mean ± standard deviation [SD],
0.6 ± 0.36◦/s). After considering the accuracy of saccade choices,
we also quantify the accuracy of drift eye movements as a
measure of the stimulus motion direction, and compare the
precision of the drift with that of the saccade choices.

Figure 3. Choices reflect stimulus motion direction after training. (A) Distribu-
tions of saccade end-points for noncued trials for both marmosets as kernel
density plots. At each spatial location, target motion direction is represented

by the hue (see inset) while the density of saccade end-points (i.e., trials) is
represented by the saturation. For the trials shown, random dot patterns moved
coherently in one of 50 possible directions between 0 and 360◦. (B) Mean choice
direction (symbols) for noncued trials plotted against target motion direction.

Behavioral choices of both marmosets were highly correlated with the target
motion direction. Error bars show ±1 standard deviation. (C) Distributions of
angular error, the difference between the marmoset’s choice and the true motion
direction on each trial, for both marmosets.

After Training, Choices Reflect Motion Direction

The improvement in motion estimation performance with train-
ing is reflected in the distributions of saccade end-points (i.e.,
choices) for the two marmosets (Fig. 3A). For both marmosets,
the distribution of saccade end-points reflects the distribution
of directions presented. Specifically, saccade end-points for both
monkeys are distributed around an annulus, and are grouped
according to target motion direction (like-colored points are
grouped, with an orderly progression of colors around the
annulus).

We quantified the performance of both marmosets, after
training, in two ways. First, we computed the circular correlation
between their choices and the presented target motion
direction. The choices of both marmosets were strongly cor-
related with the target motion direction (Fig. 3B; ρ = 0.86 ± 0.01
for monkey S; ρ = 0.89 ± 0.01 for monkey H; mean ± SEM).
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Motion Perception in the Marmoset Cloherty et al. 7

Second, we computed the distribution of angular errors between
the monkey’s choice and the target motion direction on each
trial. For both marmosets, the distribution of errors deviates
significantly from uniform (P < 0.001; Rayleigh test) with
unimodal peaks close to 0 (Fig. 3C). The standard deviation of the
error distributions, a measure of the precision of the perceptual
reports, was 34.4 ± 1.2◦ for monkey S and 33.1 ± 1.0◦ for monkey
H (mean ± SEM).

Performance Increases Through Learning

The distributions of angular errors are well described by a mix-
ture of a uniform distribution (reflecting nonperceptual errors or
“lapses”) and a wrapped normal distribution (reflecting errors in
perceptual processing or motor output; see Material and Meth-
ods; Fig. 4A). We further quantified the marmosets’ performance
during training by fitting the mixture model to the distribution
of angular errors within each session. The performance of one
marmoset (monkey S) was initially very poor but improved over
the course of training (Fig. 4B; left). The reduction in standard
deviation of the error distribution with training was fit by a
single exponential function (solid curve in Fig. 4B; left) with
an asymptote of 15.8 ± 1.4◦ (mean ± SEM). The performance of
the second marmoset (monkey H) was good even in very early
sessions. Estimates of the standard deviation of the error distri-
bution for this marmoset were initially variable (from session to
session) but converged, with training, to a value of 25.8 ± 4.7◦.

The lapse rate of both marmosets decreased with training
(Fig. 4C) and was fit by a single exponential function (solid
curves in Fig. 4C) with asymptotes of 0.09 ± 0.04 (monkey S;
mean ± SEM) and 0.03 ± 0.02 (monkey H). Both marmosets there-
fore learned the task during training but with distinct learning
trajectories.

Note that in some sessions, particularly early in training,
we could not reasonably fit the mixture model to estimate the
standard deviation of the errors or the subject’s lapse rate, either
because the available data were insufficient (<30 noncued trials
within a session) or the distribution of errors was inconsistent
with the mixture model (e.g., errors better described by a uni-
form distribution). These sessions are indicated by open symbols
at the top of each panel in Figure 4B,C.

Accuracy and Reaction Time Vary Systematically with
Signal Strength

During training (sessions 1–68 for monkey S and sessions 1–
44 for monkey H; Figs 2–4), marmosets saw only stimuli with
coherent motion (i.e., SS = 1.0). After the monkeys learned the
task, as evidenced by significant correlations between choice
and motion direction (Fig. 3), and by a plateau in their perfor-
mance (Fig. 4), we randomly interleaved trials with a range of
motion SSs. We varied SS by varying the width of the generating
distribution. The smallest width of the generating distribution
(0◦) assigned all dots the same motion direction (SS = 1). Greater
widths of the generating distribution introduced greater direc-
tion scatter among dots, with the largest possible width (360◦)
reflecting uniform sampling of all possible motion directions
(SS = 0). After training, marmosets performed this motion esti-
mation task in daily sessions over several months (17 021 trials
over 85 sessions for monkey S and 17 937 trials over 77 sessions
for monkey H). On average, the marmosets performed the task
for 20–30 min per day (mean ± SD, 25.7 ± 4 min for monkey
S; 26.7 ± 4 min for monkey H). To investigate how marmosets

pool motion signals to make perceptual decisions, we computed
psychometric and chronometric functions for both marmosets.
These data consisted of the angular error of the marmoset’s
choice (Fig. 5; see Materials and Methods) and their reaction
time (the interval from onset of the motion stimulus until the
marmoset indicated a choice; Fig. 6) for each completed trial, for
all target motion directions and all motion SSs.

Figure 5A shows distributions of angular errors for both mar-
mosets over a range of motion SSs. We quantified their per-
formance in two ways. First, we computed the proportion of
trials on which their choices fell within the reward window (i.e.,
error < 28◦; see Materials and Methods). Second, we fitted the
mixture model to the distributions of angular errors, pooling the
data across all conditions (i.e., all target motion directions and
all motion SSs). Specifically, we fixed the lapse rate, λ, across all
SSs but allowed the standard deviation of the wrapped normal
distribution to vary with SS.

For strong motion signals, the proportion correct for both
marmosets approached or exceeded 0.8 (proportion correct 0.83
and 0.79, 95% CIs [0.82, 0.84] and [0.77, 0.80], for monkeys S
and H, respectively; Fig. 5B), and the standard deviation of their
errors, as quantified by the mixture model, was similar (17.9◦
and 20.3◦, 95% CIs [17.2, 18.5] and [19.8, 21.0], for monkeys S and
H, respectively; SS = 1; Fig. 5C). For both marmosets, proportion
correct and the standard deviation of their errors were approxi-
mately constant at these levels for SSs SS > 0.75 (corresponding
to values of the stimulus range parameter < 90◦). However, for
both marmosets, proportion correct decreased (Fig. 5B) and the
standard deviation of their errors increased (Fig. 5C) monotoni-
cally as SS was reduced.

In the absence of any coherent motion signal (i.e., SS = 0),
the error distributions of both marmosets were approximately
uniform (Fig. 5A; bottom) and the proportion correct for both
monkeys was consistent with chance performance (indicated
by the dashed gray line in Fig. 5B). For this condition, the stan-
dard deviation of the normal distribution of the mixture model
exceeded 100◦ (Fig. 5C), again, consistent with chance perfor-
mance.

The reduction in performance, both the decrease in propor-
tion correct and the increase in standard deviation of the mar-
moset’s errors, as SS is reduced reflects the increasing difficulty
of the task. This increase in difficulty is also reflected in the time
taken for the marmosets to reach a decision (Fig. 6). Figure 6A
shows distributions of reaction time for both marmosets over
a range of motion SSs. These distributions are unimodal and
highly skewed. To quantify changes in reaction time as SS was
varied, we computed the median reaction time for all trials
of each SS (Fig. 6B). For the strongest motion signal, the reac-
tion times of both marmosets were similar (median, 253 and
259 ms, 95% CIs [250, 258] and [258, 260], for monkeys S and
H, respectively). For both marmosets, reaction time increased
monotonically as SS was reduced. In the absence of any coherent
motion signal (SS = 0), median reaction times were 398 and
382 ms, 95% CIs [391, 408] and [374, 392], for monkeys S and
H, respectively. Thus marmosets systematically trade speed for
accuracy, integrating for longer time periods when noise or
uncertainty in the sensory signal is higher.

Comparison of Motion Estimation in Marmoset and
Human Observers

To compare motion estimation performance of the marmoset
with that of human observers, we had four human subjects
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Figure 4. Motion estimation performance improved with training. (A) To quantify behavioral performance, both during training and subsequently on the main task,
we modeled the distributions of angular errors as a mixture of two probability distributions: a uniform distribution (reflecting nonperceptual errors or “lapses”) and
a wrapped normal distribution (reflecting errors in perceptual processing of the motion stimulus). The relative contribution of these two distributions is determined

by the lapse rate, λ. Task performance is quantified by the standard deviation, σ , of the wrapped normal distribution. (B) Standard deviation of both marmosets’ errors
plotted as a function of training session number. (C) Lapse rate plotted as a function of training session number for both marmosets. The lapse rate of both marmosets
decreased with training. Note that we were unable to fit the mixture model in some sessions, particularly early in training when the marmosets performed relatively
few noncued trials in each session. Sessions containing too few (<30) noncued trials are indicated by open symbols at the top of the axes in B and C. Symbols on the

far right of each panel in B and C show standard deviation and lapse rate, respectively, after more than 1 year of training (see Fig. 2). Solid curves show least-squares
fits of a single exponential function.

perform the same motion estimation task. As for the mar-
mosets, we quantified human performance in terms of their
proportion correct (Fig. 5B), and the precision of their choices
(by fitting the mixture model; Fig. 5C). Over all SSs, the human
observers performed better than the marmosets (Fig. 5B,C).

On trials containing strong motion signals, the human
subjects performed significantly better than the marmosets:
proportion correct 0.99, 1.0, 0.98, and 0.99, 95% CIs [0.98, 1.0],
[1.0, 1.0], [0.96, 1.0] and [0.96, 1.0], for humans 1–4, respectively
(Fig. 5B). Similarly, the human subjects’ choices were more
precise, with standard deviations approximately half those
of the marmosets (at the highest SS tested, SS = 0.875, the
standard deviations of the human subjects’ perceptual errors
were 10.6◦, 9.9◦, 11.9◦, and 13.4◦, 95% CIs [10.0, 11.1], [9.5,
10.4], [11.2, 12.6], and [12.7, 14.1], for humans 1–4, respectively;
Fig. 5C). Like the marmosets, the performance of all four human
subjects decreased as the strength of the motion signal was
reduced.

Human observers also showed a systematic increase in reac-
tion time as SS was reduced (Fig. 6B), reflecting a similar trade-

off in speed versus accuracy to that seen in the marmosets. How-
ever, this trade-off was less dramatic in the human observers
than in the marmosets (Fig. 6B). Notably, human observers were
substantially slower than marmosets in the high SS conditions
(median reaction times 296, 288, 290, and 321 ms, 95% CIs
[296, 297], [287, 288], [288, 296], and [316, 323], for humans 1–4,
respectively versus 250 and 258 ms, 95% CIs [249, 256] and [257,
259], for monkeys S and H, respectively; SS = 0.875, the highest
SS seen by the human observers). However, this relationship
was reversed under conditions of greater stimulus uncertainty
(median reaction times 330, 365, 323, and 365 ms, 95% CIs
[329, 331], [354, 379], [317, 325], and [362, 371], for humans 1–
4, respectively, versus 391 and 365 ms, 95% CIs [383, 400] and
[357, 375], for monkeys S and H, respectively; SS = 0.125, the
lowest SS seen by the human observers; Fig. 6B). Overall, mar-
moset and human observers exhibited similar qualitative trends
for increasing reaction time with decreasing SS, but differed
in the scale of this effect, with marmosets showing a greater
dependence of reaction time on SS and less precision in their
estimates.
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Motion Perception in the Marmoset Cloherty et al. 9

Figure 5. Perceptual errors vary systematically with motion SS. (A) Distributions of angular errors—the difference between the marmoset’s choice and the true motion

direction on each trial—for a range of motion SSs (see Material and Methods). Signal strength, SS = 1, corresponds to coherent motion while SS = 0 corresponds to
random, incoherent motion. Error distributions (bars) of both monkeys became broader as SS was reduced. The data include 17 021 trials, across all conditions, from
85 sessions for monkey S and 17 937 trials from 77 sessions for monkey H. Solid curves show the probability density defined by the mixture model (see Materials
and Methods) fitted to the error distributions. (B) Proportion of correct (i.e., rewarded) trials as a function of SS. Proportion correct for both marmosets decreased as

SS was reduced. In the absence of any coherent motion signal (SS = 0), both marmosets performed at the chance level (dashed line). (C) Standard deviation of the
mixture model, fitted to each marmoset’s errors, as a function of stimulus strength. The standard deviation of both marmosets’ errors increased as SS was reduced.
For comparison, B and C show comparable metrics for four human observers performing the same motion estimation task (see Material and methods). The human
observers performed better than the marmosets over all SSs. In B and C, error bars show bootstrap estimates of the 95% CI for the corresponding metric. Solid curves

in B show maximum likelihood fits of a logistic function.

Choices Reflect Stimulus Fluctuations

To assess whether differences in performance between humans
and marmosets are due to a difference in their temporal
integration strategies, we used psychophysical reverse corre-
lation to estimate temporal kernels for both marmosets and
the four human observers (see Materials and Methods). We
first aligned each trial with the time of motion stimulus onset
and computed the correlation between the mean dot direction
on each stimulus frame and the monkey’s perceptual choices,
across all trials (Fig. 7A). The kernels estimated for the two
marmosets were indistinguishable. Both marmosets exhibit
small, but positive correlations over a period of approximately
250 ms following onset of the motion stimulus, with early frames
having a modestly greater influence on their choices (Fig. 7B).
Because there was no constraint in the task to wait for the
entire stimulus duration prior to initiating the saccade, it is

also useful to look at the temporal profile of integration prior
to the saccade by realigning all trials to saccade onset (Fig. 7C).
These kernels reveal that the marmosets integrate motion over
a relatively brief time window that peaks approximately 150 ms
before saccade onset and ends approximately 50 ms before
the saccade. This latter period in which sensory integration
contributes little to the perceptual decision is likely required to
plan the eye movement. This delay is commonly observed in
human behavior and is termed the saccade dead time (Findlay
and Harris 1984; Becker 1991).

We considered to what extent the kernel locked to stimulus
onset (Fig. 7B) could be explained by the kernel aligned to the
saccade (Fig. 7C), after taking into account the variation in
reaction times (Fig. 6). We first averaged the kernels for both
marmosets shown in Figure 7C. For each trial the marmosets
performed, we shifted this average kernel by the observed
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Figure 6. Reaction time varies systematically with motion SS. (A) Distributions of reaction time—the time interval from onset of the motion stimulus until the

marmosets’ indicated their choice—for a range of motion SSs. Arrow heads indicate the median reaction time for each distribution. (B) Median reaction time as
a function of SS. For comparison, B also shows median reaction times for four human observers performing the same motion estimation task. Both humans and
marmosets exhibit a typical increase in reaction time as SS was reduced. However, the increase in reaction time of the human observers was less dramatic than that
of the marmosets. In B, error bars show bootstrap estimates of 95% CIs. Solid curves show least-squares fits of a hyperbolic tangent function.

reaction time, in effect realigning this kernel with stimulus
onset. We then averaged these shifted kernels across trials
to obtain an estimate of the temporal kernel that would
result from alignment with stimulus onset. This prediction is
shown overlaid in Figure 7B (black line) and provides a good
approximation of the kernels estimated by reverse correlation
(Fig. 7B). Thus it appears that the contribution of motion
information to marmoset decisions is most parsimoniously
explained by a presaccadic integration process followed by
postdecision saccade dead time.

We performed the same correlation analyses for the four
human observers (lower panels in Fig. 7B,C). Temporal integra-
tion kernels for all four humans were remarkably similar to each
other. In contrast to the marmosets, human kernels aligned to
stimulus onset (Fig. 7B) exhibit a strong peak early in the stim-
ulus presentation rather than the more prolonged and uniform
kernels for the marmosets. However, estimates of the kernels
aligned with saccade onset (Fig. 7C) are very similar to those
for the marmosets, after allowing for a difference in saccade
dead time. Human observers exhibit saccade dead times that

extended out to 150–200 ms prior to the saccade, as compared
with the briefer 50–100 ms dead time for marmosets. As was
the case for marmosets, it was possible to provide an accu-
rate prediction of the stimulus aligned kernels for the human
observers by shifting their average saccade-aligned kernel based
on the observed reaction times (Fig. 7B, black line). The early
peak observed for human subjects, but not marmosets, reflects
the smaller variation in reaction times of the humans (median
reaction time of the human observers varied by 47 ms, on aver-
age, over the range of SSs tested) compared with the marmosets
(135 ms).

The temporal kernels estimated after aligning to the time of
the saccade reveal that both marmosets and humans integrate
over a short window of approximately 150–200 ms, followed by
a period of little or no integration, presumably the dead time
required to plan the eye movement. Saccade dead time (see
Materials and Methods) was considerably longer in humans (103,
155, 112, and 138 ms, 95% CIs [92, 135], [144, 170], [100, 125], and
[126, 150], for humans 1–4, respectively) than in marmosets (37
and 61 ms, 95% CIs [0, 67] and [38, 88], for monkeys S and H,
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Motion Perception in the Marmoset Cloherty et al. 11

Figure 7. Choices reflect recent stimulus history. (A) To assess the influence of
different stimulus epochs (frames) on each subject’s choices, we estimated their
temporal integration weights (temporal kernel) using psychophysical reverse

correlation. For each trial, k, we computed the difference between the mean
motion direction over all dots, θj , for each stimulus frame, j, and the target motion
direction, θk . For each frame, j = 1, . . ., N, we constructed a vector containing
these differences for all trials. We then computed the correlation between this

vector, for each frame, with the vector containing the difference between the
subject’s choices, θ̂k, and the corresponding target motion directions, θk , to reveal
the subject’s “temporal kernel”. (B) Temporal kernels for each subject for trials
aligned with the onset of the motion stimulus. (C) Temporal kernels for each

subject as in B, after realigning each trial with the onset of the saccade indicating
the subject’s choice. Arrow heads indicate the estimated saccade dead time for
each subject. For comparison, B and C also show temporal kernels for four human

observers performing the same motion estimation task. Shaded regions indicate
bootstrap estimates of 95% CIs. (D) Average saccade-aligned temporal kernels for
marmosets and humans, accounting for differences in saccade dead time and
normalizing to the peak amplitude.

respectively). To assess the similarity of the temporal kernels for
marmoset and human observers, accounting for the differences
in dead time, we realigned the kernels for each subject by sub-
tracting their corresponding dead time, averaged these kernels
across subjects, and then normalized by the peak amplitude.
The resulting normalized average kernels for marmosets and
humans were highly correlated (Pearson’s R = 0.85, P < 0.001;
Fig. 7D).

Presaccadic Eye Drift Reflects a Less Accurate Read-Out
of Stimulus Motion

The random dot motion stimulus often evoked small drifts
in eye position during its presentation (Fig. 8A). To determine
if these movements were on average driven by the onset of
stimulus motion, we projected instantaneous eye velocity (see
Materials and Methods) onto the direction of the motion stim-
ulus, and averaged the resulting eye speed signals across all
trials for each motion SS (Fig. 8B). For both marmosets, these
average eye speed traces revealed epochs of significant drift
(speed > 0) beginning approximately 75 ms after onset of the
motion stimulus. This latent period was longer, approximately
125 ms, in the human observers. Eye speed in the direction of
the motion stimulus was greatest for coherent motion (SS =
1.0

)
and decreased systematically as motion SS was reduced

(Fig. 8B).
We next quantified how well the presaccadic eye drift tracked

stimulus motion on a trial by trial basis. We computed the mag-
nitude and direction of drift on each trial by taking the vector
sum of instantaneous eye velocity within a window beginning
75 ms (125 ms for the human observers) after motion stimulus
onset and extending up until 20 ms before onset of the saccade
which terminated each trial. These drift vectors exhibited small
components in the direction of the motion stimulus (distribu-
tions shown in Fig. 8C; median 0.08 and 0.09◦/s, 95% CIs [0.075,
0.083] and [0.085, 0.095], for monkeys S and H, respectively;
SS = 1.0).

To assess the accuracy of drift as a measure of stimulus
motion, we computed the drift error on each trial as the angular
difference between the drift direction and the stimulus motion
direction. To facilitate comparison with choices indicated by
the saccades, we then computed the proportion of correct trials
(error with the reward window; see Materials and Methods) as a
function of SS (Fig. 8D). For strong motion signals, the proportion
correct for both marmosets based on drift direction (solid lines,
Fig. 8D) was almost half that based on their saccades (dashed
lines, Fig. 8D). At the highest SS, the proportion correct was 0.53
and 0.55, 95% CIs [0.49, 0.65] and [0.51, 0.63], for monkeys S
and H, respectively. For the human observers, proportion correct
based on the drift vector was worse than that of the marmosets
(Fig. 8D). This is likely due to the humans’ better control of
fixation compared with the marmosets. For both the marmosets
and the human observers, proportion correct decreased as SS
was reduced. In the absence of any coherent motion signal
(i.e., SS = 0), proportion correct was consistent with chance
performance.

Last, we considered to what extent the presaccadic drift
might influence the subsequent saccade choices. If the drift
influenced subsequent saccade choices, then we would predict
that trial by trial errors of the two measures would be corre-
lated. However, if drift and saccade choices were independently
driven by the motion stimulus, we would expect the errors to
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Figure 8. Choices are independent of small drifts in eye position during motion presentation. (A) Horizontal and vertical eye position from a representative trial from
one monkey (Monkey H, SS = 0) plotted in space (upper panel) and over time (relative to motion stimulus onset; lower panel). We often observed small drifts in eye

position during presentation of the motion stimulus (green symbols in the upper panel and green shaded epoch in the lower position-vs.-time panel). (B) Eye speed
versus time relative to motion stimulus onset, projected onto the motion stimulus direction and averaged over all trial for each SS. On average, the eyes remain
stationary for approximately 75 ms after motion onset (longer, ∼125 ms, in human observers) before drifting slowly until onset of the saccade indicating the subject’s
choice. Drift speed decreased systematically as motion SS was reduced. (C) Magnitude of the drift in the direction of the stimulus motion. (D) Proportion of correct

trials as a function of SS, based on the drift vector direction. Proportion correct for both marmosets and humans decreased as SS was reduced. To aid comparison,
dashed lines show proportion correct for each subject based on their choices (reproduced from Fig. 5B). (E) Density plots of saccade error versus drift error to assess
the extent to which systematic drift in eye position could account for the subject’s subsequent choice. For both marmosets and humans, errors in the subject’s choices
were independent of errors in drift direction. Same conventions as in Figs 5–7.

be uncorrelated. We computed the correlation between errors in
the monkey’s choices (revealed by their saccades) with the cor-
responding errors in the drift vectors (Fig. 8E). We found no sig-
nificant correlation, for either monkey, even at the highest SSs
tested (R = −0.01 and 0.01, 95% CIs [−0.05, 0.03] and [−0.04, 0.07],
for monkeys S and H, respectively; Fig. 8E). Similarly, we found no
significant correlation for the human observers: R = 0.0, −0.01,
0.08, −0.08, 95% CIs [−0.07, 0.08], [−0.08, 0.05], [−0.01, 0.15], and

[−0.24, 0.07], for humans 1–4, respectively. This suggests that
while the drift is driven by the motion stimulus, it does not
directly influence the saccade choice.

Discussion
Marmoset monkeys promise to offer unprecedented access to
circuit-level measurements in a primate brain during visually

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article-abstract/doi/10.1093/cercor/bhz267/5673278 by Jennifer M

cC
arthy user on 06 January 2020



Motion Perception in the Marmoset Cloherty et al. 13

guided behaviors (for review, see Mitchell and Leopold (2015)).
Here, we developed a paradigm for studying motion percep-
tion in the marmoset that is amenable to their oculomotor
behavior and to the study of neural population codes. We found
that marmosets learned the motion estimation task within a
reasonable timespan and performed with an accuracy that,
although short of human performance, was qualitatively similar.
Both marmosets and humans had accuracy and reaction times
that depended on the difficulty of the task. Additionally, both
species’ reports depended systematically on temporal fluctua-
tions in the direction of the stimulus, indicating brief tempo-
ral integration. Marmosets and humans used similar temporal
weighting of evidence that favored information immediately
preceding saccade onset, differing primarily in the duration of
their saccade dead time. Both marmosets and humans also
exhibited low gain eye drift, during fixation, which follows stim-
ulus motion with short latencies from stimulus onset. This low
gain drift was less accurate as an estimate of stimulus motion
direction than the subsequent saccade choices and was not
predictive of errors in the subsequent saccades. This suggests
that while eye drift and saccade choice are both related to
stimulus motion, for both marmosets and humans, they may
rely on partly nonoverlapping mechanisms.

Estimation paradigms, like the one employed here, offer
several advantages over traditional two-alternative forced
choice tasks. The primary advantage is that they produce a
distribution over perceptual reports, which can more accurately
distinguish the computations that are involved in generating
the percept (Webb et al. 2007, 2011). This extra level of detail
can distinguish between perceptual algorithms (Webb et al.
2007, 2011; Laquitaine and Gardner 2018) or may reveal dynamic
biases (Panichello et al. 2018) in a manner that is not possible
with forced choice paradigms. Additionally, estimation tasks
can target all stimulus features (e.g., direction) equally, making
them better suited for large population recordings from neurons
with diverse tuning, as opposed to discrimination tasks, which
are typically optimized for a few neurons under study. The
estimation task employed here did not require long training
periods for the marmosets (∼3 months). For comparison, on
a two-alternative forced choice motion discrimination task
in macaque monkeys, Law and Gold (2009) reported that
while performance plateaued quickly for one monkey (<20
sessions), the second monkey required considerably more
training (>60 sessions). Our marmosets learned the motion
estimation task (for high SS stimuli) in 40–60 sessions. One
caveat with estimation paradigms is that they produce fewer
repeats of each condition. For comparisons with physiology, it is
possible to reduce the number of stimulus difficulties presented
per session, or pool across sessions using chronic recordings.
However, we believe that model-based approaches to comparing
behavior and physiology will be sufficiently rich, specifically
because motion-perception is such a well-developed field.

One distinctive feature of our estimation paradigm is that
observers were free to indicate their choice while the stimulus
presentation was ongoing. This may have important conse-
quences for how we interpret the accumulation of motion evi-
dence. We found that motion integration was better explained
in a saccade aligned reference frame rather than aligned to
stimulus onset. Both human and marmoset observers integrated
motion over a short window of approximately 150–200 ms, fol-
lowed by a period of little or no integration, presumably the
dead time required to plan the eye movement. We could reliably
predict the motion integration that was locked to stimulus onset

based on the kernels aligned to saccade onset, but the reverse
was not true. If the observers had been constrained to maintain
fixation until completion of the stimulus epoch, we would not
have been able to examine these dynamics, and may have erro-
neously concluded that humans preferentially integrate earlier
evidence in the stimulus epoch whereas marmosets do not. A
recent study in which macaque monkeys performed a motion
discrimination task also allowed subjects to indicate perceptual
choices prior to the end of the stimulus epoch (Okazawa et al.
2018). They found comparable trends in the weighting of motion
evidence, with peaked response-aligned kernels followed by a
delay—the saccade dead time—preceding the saccade (Okazawa
et al. 2018). Similar to the kernels we observe, Okazawa et al.
(2018) found that kernels estimated when trials were aligned to
stimulus onset exhibit an apparent early weighting of sensory
evidence. They showed that this pattern is nonetheless consis-
tent with a decision-making process that involves an integra-
tion process that weights sensory evidence equally over time,
provided that there is an accumulation to bound followed by a
variable dead time preceding the saccade response. There are,
however, other possible models that could explain the weighting
of sensory evidence which might also apply to our data (Yates
et al. 2017; Levi et al. 2018). Our results remain agnostic to the
underlying mechanism, but do support the notion that both
marmosets and humans use a similar temporal weighting of
evidence, differing primarily in the duration of their saccade
dead time.

Although both marmosets and humans showed a depen-
dence of speed and accuracy on stimulus strength, reaction
times varied over a relatively short range compared with
prior work on perceptual decisions (Palmer et al. 2005). Our
reverse correlation analysis confirmed that both humans and
marmosets exhibited relatively short integration windows
on the order of 150–200 ms. This appears shorter than the
integration windows observed for alternative forced-choice
decision-making paradigms (Hanks et al. 2011; Kiani et al.
2014; Okazawa et al. 2018), more closely resembling reaction
times for perceptual and pursuit tasks (Osborne et al. 2007;
Price and Born 2010). The relatively short integration windows
for our estimation paradigm make it amenable to neurophys-
iological study using short counting windows. For example,
when computing choice correlations and other measures of
decision-making, there would be value in being able to localize
the relevant motion integration to a relatively short epoch.
Moreover, the short integration windows we observe seem likely
to be more relevant to the natural timescales of behavior in
which perceptual decisions are normally made.

Marmosets also exhibited small drift movements during fix-
ation along the direction of stimulus motion that occurred just
before their saccade choice. Although our paradigm discour-
aged eye drift due to the fixation constraint, these movements
persisted over training with very low velocities, typically under
20% gain for marmosets and 10% gain for humans. We were
able to average the velocity traces across trials to resolve their
time course relative to motion onset. Average eye velocity began
to ramp up along the stimulus motion direction at latencies
of 70–80 ms in marmosets and 100–150 ms in humans. This
low gain following of stimulus motion resembles involuntary
ocular following movements in tasks using wide-field motion
stimuli with no fixation constraint (Miles et al. 1986; Gellman et
al. 1990). We quantified the accuracy of the eye drift direction
from motion onset up until the saccade choice as a report for
the motion direction but found that it was poor relative to the
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saccade choices made by the subjects (Fig. 8D). The errors in eye
drift direction did not correlate well, on a trial by trial basis, with
errors in the saccade choices (Fig. 8E), suggesting that although
both are driven by motion information in the stimulus, they may
rely on at least partly different neural mechanisms. A previous
study has also reported some degree of independence for motion
read-out in perception as opposed to ocular following in human
participants (Simoncini et al. 2012; Glasser and Tadin 2014; Price
and Blum 2014). It is possible that eye drift might provide a more
accurate measure of motion direction under conditions different
to those in our study. We optimized our task to focus on saccade
choices, and by using a fixation point, discouraged smooth
following of stimulus motion. Thus, it seems likely that more
accurate following responses would occur using conventional
ocular following paradigms.

The current paradigm employed random motion stimuli pre-
sented at foveal and parafoveal eccentricities rather than in
peripheral apertures. Classical studies in macaques have nor-
mally used peripheral stimuli that were localized precisely to
match the receptive fields of the neurons under study in daily
sessions (Newsome et al. 1989; Britten et al. 1992). This carries
a clear advantage for correlating the activity of those neurons
with behavioral choices, as they will be the most relevant to the
behavior. It should be possible to adapt the current paradigm
for peripheral stimulus locations (Nichols and Newsome 2002),
but the use of foveal stimuli may also carry complementary
advantages for large-scale array recordings in marmosets. First,
when using arrays, it is not necessarily optimal to tailor stimuli
for individual neurons. In that context, targeting foveal locations
may be desirable. Besides the prominence of the fovea in primate
vision, several recent studies demonstrate selective weighting of
foveal information for motion integration in smooth eye move-
ments (Mukherjee et al. 2017). Further, it is relatively straightfor-
ward to reliably target foveal representations in areas MT and
MST of the marmoset because they are readily accessible at the
cortical surface. In short, while the use of stimuli near the fovea
in the current behavioral design deviates from several previous
studies, it may confer distinct advantages for studying neural
coding in the marmoset.

Recent studies in anesthetized marmosets have been able
to span foveal and peripheral representations within MT/MST
using planar silicon arrays (Chaplin et al. 2017; Zavitz et al. 2017).
Similar methods could be readily employed in awake marmosets
in conjunction with the current behavioral paradigm, and
would enable us to examine the neural code for motion
perception from large-scale populations. Thus, our findings
establish motion perception in the marmoset as a highly
promising model system for studying the population codes
and circuit mechanisms that underlie perception in a primate
species.
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